Indonesian Journal of Medical Chemistry and Bioinformatics
Abstract
Introduction: Cancer is a major etiology of death worldwide due to high mortality and suboptimal medicine. However, an emerging field, targeted therapy enabled a more selective and effective therapeutic action. This article aims to analyze in-silico the hypothetical targeted therapy agent that is combinations of conjugate consisting of EGFR targeting moieties and diphtheria toxin (DT-390).
Method: Our novel peptide is a conjugate of a novel EGFR targeting peptide and DT-390, forming a chimera. The tertiary structure was predicted using AlphaFold 2.0. The best IDDT scoring and stereochemistry profiles were utilized. The HADDOCK2.4 webserver modelled the docking between our model and EGFR dimers, limited to its active residues. Gibbs free energy analysis, dissociation constants, and interfacial contacts are the primary outcomes measured.
Results: The confidence of the models ranged from moderate to high. The model conjugated with native hEGF (ΔG -14 kcal/mol) provided the best confidence compared to our novel peptide (ΔG -12.8 kcal/mol). Higher valences of peptides were found to have better confidences (hEGF ΔG -19.3 kcal/mol; EGFR de novo ΔG -14.3 kcal/mol). Our findings correspond to an in vitro study by Qi et al that concludes a bivalent hEGF is more effective than monovalent. However, the linker used also displays considerable bonding to the target. This may be from the linker’s considerable flexibility that allows it to accidentally interact with EGFR active residues. It is to be noted that the interactions formed were nonspecific and therefore unlikely to cause off-target effects.
Conclusion: Our novel EGFR targeting peptide is effective in increasing selectivity of DT-390 to EGFR active residues. Our study does not consider the structural changes that might occur due to erroneous binding to other receptors. Further docking and molecular dynamics studies are important to further develop this novel system as a targeted therapy agent.
Bahasa Abstract
Pendahuluan: Pengobatan kanker sekarang memiliki hasil yang bersifat suboptimal dan menyebabkan off-target damage. Terdapat konsep terapi target yang menunjukkan sifat sitotoksik selektif selektif terhadap kanker. Melalui penelitian ini, agen terapi target hipotetik berupa kombinasi penarget EGFR dan toksin difteri (DT-390) dianalisis secara in silico.
Metode: Model merupakan protein kimera yang terdiri atas DT-390 dan gugus peptida penarget EGFR yang diperoleh dari penelitian-penelitian sebelumnya. Struktur tersier dari sekuens kimerik diprediksi menggunakan AlphaFolds 2.0. Model dengan skoring IDDT dan profil stereokimia terbaik akan dianalisis. Server web HADDOCK2.4 digunakan untuk menyimulasikan docking antara model yang diproduksi dan dimer EGFR dengan residu aktifnya sebagai pembatas. Hasil persandingan dan analisis energi bebas Gibbs yang diprediksi, konstanta disosiasi, dan kontak interfasial menjadi hasil primer penelitian.
Hasil: Hasil pemodelan relatif homologus terhadap masing-masing induk dari gugus penyusun, dibuktikan dengan model confidence sedang-tinggi. Model dengan penarget gugus yang berasal dari hEGF (ΔG -14 kcal/mol) memiliki model confidence yang lebih baik dibandingkan dengan peptida EGFR de Novo (ΔG -12.8 kcal/mol). Model dengan valensi hEGF juga memiliki ikatan lebih spontan dengan pasangan de Novo, dengan valensi lebih tinggi (hEGF ΔG -19.3 kcal/mol; EGFR de novo ΔG -14.3 kcal/mol) yang memiliki performa lebih baik untuk kedua tipe gugus penarget. Temuan ini berkorelasi baik dengan studi in vitro oleh Qi et al. yang menyimpulkan bahwa model hEGF bivalen lebih bersifat superior dibandingkan dengan valen tunggal. Bahkan, DT-390 dengan linker sebagai gugus penarget juga menghasilkan performa baik. Hal ini mungkin terjadi karena sifat alamiah linker yang sangat fleksibel dan adanya interaksi aksidental antara linker dengan residu aktif EGFR. Akan tetapi, jika dibandingkan dengan ligan lain EGFR, ikatan kontrol memiliki similaritas yang tinggi dengan ikatan beberapa ligan, menunjukkan adanya ikatan yang tidak spesifik, sehingga tidak ada aktivitas penarget yang menyebabkan reaksi tidak tepat sasaran (off-target) dengan reseptor lain.
Kesimpulan: Gugus penarget EGFR efektif untuk meningkatkan selektivitas toksin DT-390 melalui pengikatan dengan residu aktif EGFR. Dalam studi silico, terutama studi pemodelan, docking, dan dinamik molekuler sangat penting dalam pengembangan toksin target atau terapi target karena kemungkinan perubahan struktural 3-D yang dapat memengaruhi ikatan dengan reseptor target yang menjadi tujuan.
References
- World Health Organization. Cancer. Geneva: World Health Organization: 2022.
- American Cancer Society. Global cancer facts & figures 4th edition. Atlanta; American Cancer Society: 2018.
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol Oncol, 2018, 12(1):3–20. https://doi.org/10.1002/1878-0261.12155
- Hossein-Nejad-Ariani, H.; Althagafi, E.; Kaur, K. Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Sci Rep, 2019, 9(1). https://doi.org/10.1038/s41598-019-38574-y
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: making protein folding accessible to all. Nat Methods, 2022, 19(6):679–82. https://doi.org/10.1038/s41592-022-01488-1
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 2020, 36(6):1765–71. https://doi.org/10.1093/bioinformatics/btz828
- Honorato, R.V.; Koukos, P.I.; Jiménez-García, B.; Tsaregorodtsev, A.; Verlato, M.; Giachetti, A.; et al. Structural biology in the clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci, 2021, 8. https://doi.org/10.3389/fmolb.2021.729513
- van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol, 2016, 428(4): 720–5. https://doi.org/10.1016/j.jmb.2015.09.014
- Vangone, A.; Bonvin, A.M. Contacts-based prediction of binding affinity in protein–protein complexes. Elife, 2015, 4. https://doi.org/10.7554/eLife.07454
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 2016, 514. https://doi.org/10.1093/bioinformatics/btw514
- Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model, 2011, 51(10): 2778–86. https://doi.org/10.1021/ci200227u
- Sanders, J.M.; Wampole, M.E.; Thakur, M.L.; Wickstrom, E. molecular determinants of epidermal growth factor binding: a molecular dynamics study. PLoS One, 2013, 8(1): e54136. https://doi.org/10.1371/journal.pone.0054136
- Goverde, C.; Wolf, B.; Khakzad, H.; Rosset, S.; Correia, B.E. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci, 2023, 32(6) : e4653.
- Shilova, O.; Shramova, E.; Proshkina, G.; Deyev, S. Natural and designed toxins for precise therapy: modern approaches in experimental oncology. Int J Mol Sci, 2021 May 7;22(9):4975. https://doi.org/10.3390/ijms22094975
- Hexham, J.M.; Dudas, D.; Hugo, R.; Thompson, J.; King, V.; Dowling, C.; et al. Influence of relative binding affinity on efficacy in a panel of anti-CD3 scFv immunotoxins. Mol Immunol, 2001, (5):397–408. https://doi.org/10.1016/S0161-5890(01)00070-0
Recommended Citation
Afif Naufal, Muhammad BMed; Ansell Susanto, Benedictus BMed; Gunawan, Talitha Dinda BMed; Ridha Lukman, Azhar BMed; Rizqina, Alifa Rahma BMed; and Misbahul Fuad, Muhammad BMed
(2024)
"In Silico Modelling and Docking Simulation of EGFR-Targeted Diphtheria Toxin Chimera with Various Targeting Moieties,"
Indonesian Journal of Medical Chemistry and Bioinformatics: Vol. 3:
No.
1, Article 5.
DOI: 10.7454/ijmcb.v3i1.1029
Available at:
https://scholarhub.ui.ac.id/ijmcb/vol3/iss1/5
Included in
Alternative and Complementary Medicine Commons, Amino Acids, Peptides, and Proteins Commons, Bioinformatics Commons, Biomedical Engineering and Bioengineering Commons, Macromolecular Substances Commons, Neoplasms Commons, Other Chemicals and Drugs Commons