•  
  •  
 

Indonesian Journal of Medical Chemistry and Bioinformatics

Abstract

Bioinformatics has evolved in recent years into a crucial subject and a well-liked research area that is interconnected with many approaches and disciplines. The capacity of bioinformatics and its approaches to tackle challenging biological problems and promote research and development. There are various tools and database which are used in bioinformatics. AI is the capacity of a computational system to carry out various activities associated with intellectual beings and as a computer system's imitation of human intelligence processes. The bioinformatics applications with artificial intelligence have the capacity to annotate the data in the direction of logical conclusions. By combining AI and bioinformatics molecular dynamic simulations, molecular docking studies, annotations of biological sequences, computational drug design, and gene prediction can be analyzed effectively. The structural bioinformatics tools with artificial intelligence (AI) are effective approaches for designing novel active chemicals to treat neurological diseases and cancer. Immunoinformatics, vaccinology, health informatics, medical informatics, medical science, and pharmaceutical sciences are just a few of the health sciences that have benefited greatly from advances in AI and bioinformatics.

Future developments in omics and other fields are predicted to generate large amounts of data quickly, and bioinformatics will be essential in managing, analyzing, and discovering new uses for this data. Bioinformatics will be crucial in saving time and costs by applying AI to examine the massive data sets. Additionally, it will hasten biological discoveries, particularly those related to health, biomedical research, and robotic surgery.

Bahasa Abstract

Bioinformatics has evolved in recent years into a crucial subject and a well-liked research area that is interconnected with many approaches and disciplines. The capacity of bioinformatics and its approaches to tackle challenging biological problems and promote research and development. There are various tools and database which are used in bioinformatics. AI is the capacity of a computational system to carry out various activities associated with intellectual beings and as a computer system's imitation of human intelligence processes. The bioinformatics applications with artificial intelligence have the capacity to annotate the data in the direction of logical conclusions. By combining AI and bioinformatics molecular dynamic simulations, molecular docking studies, annotations of biological sequences, computational drug design, and gene prediction can be analyzed effectively. The structural bioinformatics tools with artificial intelligence (AI) are effective approaches for designing novel active chemicals to treat neurological diseases and cancer. Immunoinformatics, vaccinology, health informatics, medical informatics, medical science, and pharmaceutical sciences are just a few of the health sciences that have benefited greatly from advances in AI and bioinformatics.

Future developments in omics and other fields are predicted to generate large amounts of data quickly, and bioinformatics will be essential in managing, analyzing, and discovering new uses for this data. Bioinformatics will be crucial in saving time and costs by applying AI to examine the massive data sets. Additionally, it will hasten biological discoveries, particularly those related to health, biomedical research, and robotic surgery.

References

  1. Avashthi, H.; Pathak, R.K.; Gaur, V.S.; Singh, S.; Gupta, V.K.; Ramteke, P.W.; Kumar, A. Comparative analysis of ROS scavenging gene families in finger millet, rice, sorghum and foxtail millet revealed potential targets for antioxidant activity and drought tolerance improvement. Network Modeling Analysis in Health Informatics and Bioinformatics, 2020, 9(33).
  2. Jayaram, B.; Priyanka, D. Bioinformatics for better tomorrow. Supercomputing facility for bioinformatics and computational biology. New Delhi: Indian Institute of Technology, 2010.
  3. Verma, S.; Pathak, R.K.; Kasana, V.; Kumar, A. Binding affinity analysis of cinnamanilide and α-aminophosphonic acid derivatives for acetohydroxyacid synthase through molecular docking. International Journal of Agriculture, Environment and Biotechnology, 2017, 10(3), 271.
  4. Mount, D.W. Bioinformatics–sequence and genome analysis, 2001, Vol. 156. New York: CSHL.
  5. Wang, J.T.; Zaki, M.J.; Toivonen, H.T.; Shasha, D. Introduction to data mining in bioinformatics. Data mining in bioinformatics, 2005. New York: Springer.
  6. Pathak, R.K.; Giri, P.; Taj, G.; Kumar, A. Molecular modeling and docking approach to predict the potential interacting partners involved in various biological processes of MAPK with downstream WRKY transcription factor family in Arabidopsis thaliana. International Journal of Computational Bioinformatics and In Silico Modeling, 2013, 2: 262–268.
  7. Kumar, A.; Pathak, R.K.; Gupta, S.M.; Gaur, V.S.; Pandey, D. Systems biology for smart crops and agricultural innovation: Filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. OMICS: A Journal of Integrative Biology, 2015, 19(10): 581–601.
  8. Pathak, R.K.; & Singh, D.B. Systems biology approaches for food and health. Advances in agri-food biotechnology, 2020. Reading, MA: Springer.
  9. Pathak, R.K., & Singh, D.B. Integrated omics for dissecting host–pathogen interaction: Challenges and opportunities. Recent trends in “computational omics: Concepts and methodology”, 2020. United States: Nova Science Publisher.
  10. Pathak, R.K.; Baunthiyal, M.; Pandey, D.; Kumar, A. Computational analysis of microarray data of Arabidopsis thaliana challenged with Alternaria brassicicola for identification of key genes in Brassica. Journal of Genetic Engineering & Biotechnology, 2020, 18(1): 1–20.
  11. Rana, J.M.S.; Vaisla, K.S. Introduction to Bioinformatics, Bioinformatics- Tools and Applications, 2012 Edition. Uttarakhand: Uttarakhand State Biotechnology Department (Ministry of Science & Technology and Biotechnology), Government of Uttarakhand.
  12. Farzin, P.F.; Haghighi, T.S.; Sulaiman, N.; Nazari, I.; Siamak, S. Artificial control of PUMA Robot manipulator: A-Review of fuzzy inference engine and application to classical controller. International Journal of Robotic and Automation (IJRA), 2011, 2(5):401-25.
  13. Rizos, C.; Lilly, B.; Robertson, C.; Gambale, N. Open cut mine machinery automation: Going beyond GNSS with Locata. Proc. 2nd Int. Future Mining Conf, Sydney, Australia, 22-23 November, Australasian Institute of Mining & Metallurgy Publication Series 14, 2011, 87-93.
  14. Watson, J.D.; Laskowski, R.A.; Thornton, J.M. Predicting protein function from sequence and structural data. Current Opinion in Structural Biology, 2005, 15(3):275-84.
  15. Shen, J.; Zhang, J.; Luo, X.; Zhu, W.; Yu, K.; Chen, K.; Li, Y.; Jiang, H. Predicting proteinprotein interactions based only on sequences information. Proc Natl Acad Sci U S A, 2007, 104(11): 4337-41.
  16. Bessarabova, M.; Ishkin, A.; JeBailey, L.; Nikolskaya, T.; Nikolsky, Y. Knowledgebased analysis of proteomics data. BMC Bioinformatics, 2012, 13 (16) : S13.
  17. Miotto, O.; Tan, T.W.; Brusic, V. Supporting the curation of biological databases with reusable text mining. Genome Inform, 2005, 16(2):32-44.
  18. Mughal, A.A. Well-crchitected wireless network security. Journal of Humanities and Applied Science Research, 2022, 5(1), 32-42.
  19. Mughal, A. A. Cyber Attacks on OSI Layers: Understanding the threat landscape. Journal of Humanities an d Applied Science Research, 2020, 3(1), 1-18.
  20. Kim, E.C.; Kim, E.Y.; Lee, H.C.; Yoo, B.J. The details and outlook of three data acts amendment in South Korea: with a focus on the changes of domestic financial and data industry. Informatization Policy, 2021, 28(3), 49-72.
  21. Kim, E.C.; Lee, J.Y.; Jo, H.J.; Na, K.T.; Moon, E.S.; Gweon, G.G., Yoo, B.J.; Kyung, Y. SHOMY: Detection of Small Hazardous Objects using the You Only Look Once Algorithm. KSII Transactions on Internet & Information Systems, 2022, 16(8).
  22. Castiglione, F.; Pappalardo, F.; Bernaschi, M.; Motta, S. Optimization of HAART with genetic algorithms and agent-based models of HIV infection. Bioinformatics, 2007, 23(24): 3-5.
  23. Watson, J.D.; Laskowski, R.A.; Thornton, J.M. Predicting protein function from sequence and structural data. Current Opinion in Structural Biology, 2005, 15 (3):19-23.
  24. Raslan, A.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Sabri, N.A. Advances in the applications of bioinformatics and chemoinformatics. Pharmaceuticals, 2023, 16, 1050. https://doi.org/10.3390/ph16071050
  25. Meidanis, J. Current challenges in bioinformatic. In Nascimento, M.A., de Moura, E.S., & Oliveira, A.L. (Eds.), SPIRE 2003, LNCS 2857 (pp. 16–27).
  26. Tan, Y.C.; Kumar, A.U.; Wong, Y.P.; Ling A.P.K. Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology, 2022, 20(106), https://doi.org/10.1186/s43141-022-00394-5
  27. Ridriguez, J.S.M.; Barbero, J.R.; Hernandez, A.S.M.; Rodriguez, A.S.M.; Rodriguez, M.S.M. Uses of bioinformatics in the different disciplines and platforms used. World Journal of Pharmaceutical and Life Sciences, 2021, 7(10),1-14.
  28. Mehmood, M.A.; Sehar, U.; Ahmad, N. Use of bioinformatics tools in different spheres of life sciences. J. Data Mining, Genomics and Proteomics, 2014, 5(2). http://dx.doi.org/10.4172/2153-0602.1000158
  29. Sillitoe, I.; Cuff, A.L.; Dessailly, B.H.; Dawson, N.L.; Furnham, N.; Lee, D.; et al. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res, 2013, 41(D1): 490-498.
  30. Kallberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; et al. Templatebased protein structure modeling using the RaptorX web server. Nat. Protocols, 2012, 7: 1511- 1522.
  31. Vries, S.J.; Van Dijk, M.; Bonvin, A.M. The HADDOCK web server for datadriven biomolecular docking. Nat. Protocol.,2010, 5: 883-897.
  32. Letunic, I.; Doerks, T.; Bork, P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 2012, 40(D1) : 302-305.
  33. Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; et al. STRING v 9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res, 2013, 41: 808-815.
  34. Di Lena, P.; Wu, G.; Martelli, P.L.; Casadio, R.; Nardini, C. MIMO: an efficient tool for molecular interaction maps overlap. BMC Bioinfo, 2013, 14 : 159.
  35. Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res, 2011, 39: 29-37.
  36. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3), 403–410.
  37. Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 2003, 31(13), 3497–3500.
  38. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karlpus, K.; Li, W. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 11(7): 539.
  39. Kumar, S.; Tamura, K.; Nei, M. MEGA: Molecular evolutionary genetics analysis software for microcomputers. Bioinformatics (Oxford, England), 1994, 10(2), 189–191.
  40. Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; et al. Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 2014, 15(1).
  41. DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 2002, 40(1), 82–92.
  42. Guex, N.; Peitsch, M.C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714–2723.
  43. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 2004, 25(13), 1605–1612.
  44. Bunin, B.A.; Siesel, B.; Morales, G.A.; Bajorath, J. Chemoinformatics theory, 2007, (pp. 1–49). Netherlands: Springer.
  45. Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 1996, 9(1): 1–5.
  46. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free.Journal of Computational Chemistry, 2005, 26(16): 1701–1718.
  47. Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 2008, 18(5): 821–829.
  48. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 2011, 29(7): 644-652.
  49. Andrews, S. FastQC: A quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  50. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 2014, 30(15): 2114–2120.
  51. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 2011, 17(1): 10–12.
  52. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12(1): 59–60.
  53. Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England), 2005, 21(18): 3674–3676.
  54. Sperschneider, J.; Gardiner, D.M.; Dodds, P.N.; Tini, F.; Covarelli, L.; Singh, K.B.; et al. EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytologist, 2016, 210(2): 743-761.
  55. Funahashi, A.; Morohashi, M.; Kitano, H.; Tanimura, N. CellDesigner: A process diagram editor for gene-regulatory and biochemical networks. Biosilico, 2003, 1(5): 159–162.
  56. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 2003, 13(11): 2498-2504.
  57. Benson, D.; Boguski, M.; Lipman, D.J.; Ostell, J. The national center for biotechnology information. Genomics, 1990, 6(2): 389–391.
  58. Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Research, 2012, 41(D1): D36–D42.
  59. Leinonen, R.; Sugawara, H.; Shumway, M. International Nucleotide Sequence Database Collaboration, the sequence read archive. Nucleic Acids Research, 2010, 39(1): D19–D21.
  60. Tateno, Y.; Imanishi, T.; Miyazaki, S.; Fukami-Kobayashi, K.; Saitou, N.; Sugawara, H.; Gojobori, T. DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Research, 2002, 30(1): 27–30.
  61. Wu, C.H.; Yeh, L.L.; Huang, H.; Arminski, L. The protein information resource. Nucleic Acids Research, 31(1): 345-347.
  62. Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, C.; et al. UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2004, 32: D115-D119
  63. Bateman, A.; Birney, E.; Cerruti, L.; Durbin, R.; Etwiller, L.; Eddy, S.R. The Pfam protein families database, Nucleic Acids Research, 2002, 30(1): 276-280.
  64. Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH—A hierarchic classification of protein domain structures. Structure, 1997, 5(8): 1093–1109.
  65. Murzin, A.G.; Brenner, S.E.; Hubbard, T.; Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 1995, 247(4): 536–540.
  66. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; et al. The protein data bank. Nucleic Acids Research, 2000, 28(1): 235-242.
  67. Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. PubChem: Integrated platform of small molecules and biological activities. Annual reports in computational chemistry, 2008, 4 (pp. 217–241).
  68. Sterling, T.; Irwin, J.J. ZINC 15—Ligand discovery for everyone. Journal of Chemical Information and Modeling, 2015, 55(11): 2324–2337.
  69. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 2002, 30(1): 207–210.
  70. Leinonen, R.; Sugawara, H.; Shumway, M. International Nucleotide Sequence Database Collaboration, the sequence read archive. Nucleic Acids Research, 2010, 39(1): D19–D21.
  71. Rhee, S.Y.; Beavis, W.; Berardini, T.Z.; Chen, G.; Dixon, D.; Doyle, A.; et al. The Arabidopsis Information Resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community Nucleic Acids Research, 2003, 31(1): 224-228.
  72. Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S. Childs Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 2013, 6(1): 4.
  73. Ware, D.; Jaiswal, P.; Ni, J.; Pan, X.; Chang, K,; Clark, K.; et al. Gramene: A resource for comparative grass genomics. Nucleic Acids Research, 2002, 30(1): 103-5.
  74. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27–30.
  75. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-cepas, J. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47(D1): 607-613.
  76. Le Novere, N.; Bornstein, B.; Broicher, A.; Courtot, M.; Donizelli, M.; Dharuri, H. BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 2005, 34: 689-691.
  77. Ghosh, R.; Deb Bera, R.; Chandra, S.C. An overview of bioinformatics and its application: a ray of hope towards microbial biotechnology. International Journal for Multidisciplinary Research, 2024, 6(1): 1-23.
  78. Chinchole, M.; Pathak, R.K.; Singh, U.M.; Kumar, A. Molecular characterization of EcCIPK24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech, 2017, 7(4): 267.
  79. Sidhu, K.S.; Bhangu, S.K.; Pathak, R.K.; Yadav, I.S.; Chhuneja, P. Identification of natural lead compounds for leaf rust of wheat:
  80. Gupta, S.; Pathak, R.K.; Gupta, S.M.; Gaur, V.S.; Singh, N.K.; Kumar, A. Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L. 3 Biotech, 2018, 8(2): 82.
  81. Pathak, R.K.; Baunthiyal, M.; Pandey, D.; Kumar, A. Computational analysis of microarray data of Arabidopsis thaliana challenged with Alternaria brassicicola for identification of key genes in Brassica.. Journal of Genetic Engineering & Biotechnology, 2020, 18(1): 1–20.
  82. Gupta, A.K.; Gaur, V.S.; Pathak, R.K.; Gupta, S.; Kumar, A. Dof1 transcription factor interacts with only specific regions of the promoters driving the expression of genes involved in carbon and nitrogen metabolism. International Journal of Computational Bioinformatics and In Silico Modeling, 2014, 3(4): 412–422.
  83. Mamgain, S.; Sharma, P.; Pathak, R.K.; Baunthiyal, M. Computer aided screening of natural compounds targeting the E6 protein of HPV using molecular docking. Bioinformation, 2015, 11(5): 236.
  84. Sagar, M.; Pathak, R.K.; Pandey, R.K.; Singh, D.B.; Pandey, N.; Gupta, M.K. Binding affinity analysis and ADMET prediction of epigallocatechine gallate (EGCG) derivatives for AP-1 protein: A drug target for liver cancer. Network Modeling Analysis in Health Informatics and Bioinformatics, 2014, 3(66).
  85. Pathak, R.K.; Taj, G.; Pandey, D.; Kasana, V.K.; Baunthiyal, M.; Kumar, A. Molecular modeling and docking studies of phytoalexin (s) with pathogenic protein (s) as molecular targets for designing the derivatives with anti-fungal action on “Alternaria”spp. of “Brassica”. Plant Omics, 2016, 9(3): 172.
  86. Rana, G.; Pathak, R.K.; Shukla, R.; Baunthiyal, M. In silico identification of mimicking molecule(s) triggering Von Willebrand Factor (VWF) in Human: A molecular drug target for regulating coagulation pathway. Journal of Biomolecular Structure & Dynamics, 2020, 38(1): 124–136.
  87. Mamgain, S.; Dhiman, S.; Pathak, R.K.; Baunthiyal, M. In silico identification of agriculturally important molecule (s) for defense induction against bacterial blight disease in soybean (Glycine max). Plant Omics, 2018, 11(2): 98.
  88. Magi, A.; Benelli, M.; Gozzini, A.; Girolami, F.; Torricelli, F.; Brandi, M.L. Bioinformatics for next generation sequencing data. Genes, 2010, 1(2): 294–307.
  89. Pathak, R.K.; Baunthiyal, M.; Pandey, D.; Kumar, A. (2020). Computational analysis of microarray data of Arabidopsis thaliana challenged with Alternaria brassicicola for identification of key genes in Brassica.. Journal of Genetic Engineering & Biotechnology, 2020, 18(1): 1–20.
  90. Pereira, R.; Oliveira, J.; Sousa, M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. Journal of Clinical Medicine, 2020, 9(1): 132.
  91. Aneesh, T.P.; Sekhar, S.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. Journal of Clinical Medicine Research, 2009, 1(4): 191.
  92. Takahashi, T.; Luzum, J.A.; Nicol, M.R.; Jacobson, P.A. Pharmacogenomics of COVID-19 therapies. Genomic Medicine, 2020, 5(1): 1–7.
  93. Pathak, R.K.; Baunthiyal, M.; Pandey, N.; Pandey, D.; Kumar, A. Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica. Scientific Reports, 2017, 7(1): 16790
  94. Golkarie, H. How AI is shaping the future of Bioinformatics, 2019, Retrieved November 14, 2020, from https://medium.com/optima-ai/how-ai-is-shaping-the-future-of-bioinformatics-f4aa17bce5a6
  95. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. BMC Bioinformatics, 1994, 3(35): 12-16.
  96. Bhandari, D.; Murthy, C.A.; Pal, S.K. Variance as a stopping criterion for genetic algorithms with elitist model. Fundamata Informaticae, 2012, 120: 145-164.
  97. Donepudi, P.K. “Influence of cloud computing in business: are they robust?” Asian journal of applied science and engineering, 2016, 5(3): 193-196.
  98. Burge, C.; Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 1997, 268: 78-94.
  99. Douzono, H.; Hara, S.; Noguchi, Y.Y. An application of genetic algorithm to DNA sequencing by oligonucleotide hybridization. Proceedings of the IEEE international joint symposia on intelligence and systems Rockville, Maryland, USA, 1998, 5(34): 92–98
  100. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 1998, 16 (22): 10881- 10890
  101. Chung, Y.C.; Randy, L.H.; Amplitude and phase adaptive nulling with a genetic algorithm. Journal of Electromagnetic Waves and Applications, 2000, 14(5): 631-649.
  102. Cannata, N.; Schröder, M.; Marangoni, R.; Romano, P.A. Semantic Web for bioinformatics: goals, tools, systems, applications. BMC Bioinformatics, 1992, 9(4).
  103. Kumar, S.; Banks, T.W.; Cloutier, S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genom, 2012: 831460. DOI:10.1155/2012/831460
  104. Hilbert, D.; Neumann, J.V.; Nordheim, L. Über die grundlagen der quantenmechanik. On the fundamentals of quantum mechanics], Math Ann, 1928, 98.
  105. Al-Haggar, M.; Khair-Allaha, B.; M. Islam, M. Bioinformatics in high throughput sequencing: application in evolving genetic diseases.” Jour. Data Mining Genomics Proteomics, 2013, 4(131). DOI: 10.4172/2153-0602.1000131.
  106. Ezziane, Z. (2020). Applications of artificial intelligence in bioinformatics: A review. Expert Systems with Application, 2020, 30(1): 2-10. https://www.sciencedirect.com/science/article/pii/S0957417405002344
  107. Piatetsky-Shapiro, G.; Frawley, W. Knowledge discovery in databases, 1991. San Jose (CA): AAAI/MIT Press.
  108. Piatetsky-Shapiro, G. CRISP-DM, still the top methodology for analytics, data mining, or data science projects [Internet], 2017, Available from: http://www.kdnuggets.com/2014/10/ crisp-dm-topmethodology-analytics-data-mining-data-science-projects.html
  109. O. Niakšu, O. Development and application of data mining methods in medical diagnostics and healthcare management, 2015, Dissertation, Vilnius: Vilnius University.
  110. Sehgal, S.A. Pharmacoinformatics and molecular docking studies reveal potential novel Proline Dehydrogenase (PRODH) compounds for Schizophrenia inhibition. Medicinal Chemistry Research, 2017, 26(2): 314-326
  111. Moore, K.; Passley, H. Leveraging the benefits of artificial intelligence technology in bioinformatics. Retrieved from https://www.bbntimes.com/technology/ leveraging-the- benefits-ofartificial-intelligence-technology-in-bioinformatics, 2020.
  112. Meidanis, J. (2003). Current challenges in bioinformatic. SPIRE, 2003, LNCS 2857 (pp. 16–27).
  113. Kang, W. S.; Kim, E.; Heo, W. The association between soc and land prices considering spatial heterogeneity based on finite mixture modeling. arXiv Preprint, 2022, 9.
  114. Kim, E.; Na, K.; Yoo, B.; Kyung, Y. Click-through rates and consumer satisfaction: a pilot study analyzing the preferences of south korean online news consumers. Mathematical Statistician and Engineering Applications, 2022, 71(3s): 494-513.
  115. Harris, H. Fortune's Roll: A High-Stakes Gambling Adventure. Journal Of Applied Linguistics And Tesol, 2022, 5(4): 50-72.
  116. Raslan, M.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Sabri, N.A. Advances in the applications of bioinformatics and chemoinformatics. Pharmaceuticals (Basel), 2023, 16(7):1050. doi: 10.3390/ph16071050. PMID: 37513961; PMCID: PMC10384252.
  117. Ghosh, R.; Bera, R.D.; Chandra, S. An overview of bioinformatics and its application: a ray of hope towards microbial biotechnology. IJFMR, 2024, 6(1). DOI 10.36948/ijfmr.2024.v06i01.13726

Share

COinS