•  
  •  
 

Indonesian Journal of Medical Chemistry and Bioinformatics

Abstract

Abstract: Background: Serum albumin is the most abundant plasma protein in the blood, contributing to maintaining colloid osmotic pressure and binding substances that are poorly soluble in plasma so that they can be distributed throughout the body. Serum albumin levels in breast milk can vary, influenced by various factors such as the lactation phase (age of the baby), number of parities, age and body mass index (BMI) of the mother. This study aims to determine the comparison of serum albumin levels in breast milk of mothers who breastfeed infants aged 1-3 months and 4-6 months and to find the relationship with the number of parities, age and BMI of the mother.

Method: Cross-sectional design experimental study, breast milk samples as stored biological fluids were obtained from 58 mothers at the Petamburan and Cilincing Health Centers. Serum albumin levels were measured with the Bromocresol Green (BCG) kit.

Results: The results showed that breast milk in the earlier lactation period, namely at 1-3 months, had significantly higher serum albumin levels compared to the serum albumin levels in the 4-6 months age group (p=0.002). Serum albumin levels in breast milk for infants aged 1-3 months did not correlate with mother's parity (p=0.428) and mother's age (p=0.881), but had a significant positive correlation with mother's BMI (p=000). Serum albumin levels in breast milk in the 4-6 months age group did not correlate with mother's parity (p=0.823) and mother's age (p=0.581) but had a strong positive correlation with maternal BMI (p=0.000).

Conclusion: Breast milk serum albumin levels are affected by the lactation phase (age of the baby), namely at the age of 1-3 months the baby increases significantly compared to the age of 4-6 months. The level of serum albumin in breast milk is related to the mother's BMI, which increases with increasing mother's BMI.

Bahasa Abstract

Abstract: Background: Albumin serum merupakan protein plasma yang jumlahnya terbanyak dalam darah, berkontribusi dalam mempertahankan tekanan osmotik koloid dan mengikat substansi yang sukar larut dalam plasma agar dapat didistribusikan ke seluruh tubuh. Kadar albumin serum dalam ASI dapat bervariasi, dipengaruhi oleh berbagai faktor seperti fase laktasi (usia bayi), jumlah paritas, usia dan Indeks Massa Tubuh (IMT) Ibu. Penelitian ini bertujuan untuk mengetahui perbandingan kadar albumin serum ASI ibu yang menyusui bayi usia 1-3 bulan dan 4-6 bulan serta mencari hubungannya dengan jumlah paritas, usia dan IMT Ibu.

Method: Studi eksperimental desain croossectional, sampel ASI sebagai cairan biologis tersimpan diperoleh dari 58 Ibu di Puskesmas Petamburan dan Cilincing. Kadar albumin serum diukur dengan kit Bromocresol Green (BCG).

Results: Hasil penelitian menunjukkan bahwa ASI pada periode laktasi yang lebih awal yaitu pada 1-3 bulan memiliki kadar albumin serum lebih tinggi bermakna dibandingkan dengan kadar albumin serum ASI kelompok usia 4-6 bulan (p=0,002). Kadar albumin serum ASI kelompok usia bayi 1-3 bulan tidak berkorelasi dengan jumlah paritas Ibu(p=0,428) dan usia Ibu (p=0,881), namun berkorelasi positif kuat bermakna terhadap IMT Ibu (p=000). Kadar albumin serum ASI kelompok usia bayi 4-6 bulan tidak berkorelasi dengan paritas Ibu (p=0,823) dan usia ibu (p=0,581) namun berkorelasi positif kuat bermakna terhadap IMT Ibu (p=0,000).

Conclusion: Kadar albumin serum ASI dipengaruhi oleh fase laktasi (usia bayi), yaitu pada usia bayi 1-3 bulan meningkat bermakna dibanding usia 4-6 bulan. Kadar albumin serum ASI berhubungan dengan IMT Ibu, yaitu semakin meningkat seiring dengan bertambahnya IMT Ibu.

References

References

  1. Ballard O, Morrow AL. Human Milk Composition. Nutrients and Bioactive Factors. Pediatr Clin North Am. 2013;60(1). doi:10.1016/j.pcl.2012.10.002.
  2. Paulaviciene IJ, Liubsys A, Molyte A, Eidukaite A, Usonis V. Circadian changes in the composition of human milk macronutrients depending on pregnancy duration: A cross-sectional study. Int Breastfeed J. 2020;15(1). doi:10.1186/s13006-020-00291-y.
  3. Butts CA, Hedderley DI, Herath TD, et al. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the manawatu-wanganui region of New Zealand. Nutrients. 2018;10(9). doi:10.3390/nu10091231.
  4. Donovan SM. Human Milk Proteins: Composition and Physiological Significance. Nestle Nutr Inst Workshop Ser. 2019;90. doi:10.1159/000490298.
  5. Prentice A. Constituents of human milk. Food Nutr Bull. 1996;17(4). doi:10.1177/156482659601700406.
  6. Lonnerdal B, Forsum E, Gebre Medhin M, Hambraeus L. Breast milk composition in Ethiopian and Swedish mothers. II. Lactose, nitrogen, and protein contents. American Journal of Clinical Nutrition. 1976;29(10). doi:10.1093/ajcn/29.10.1134.
  7. Lonnerdal B, Forsum E, Hambraeus L. A longitudinal study of the protein, nitrogen, and lactose contents of human milk from Swedish well nourished mothers. American Journal of Clinical Nutrition. 1976;29(10). doi:10.1093/ajcn/29.10.1127.
  8. Michaelsen KF, Larsen PS, Thomsen BL, Samuelson G. The Copenhagen Cohort Study on infant nutrition and growth: Breast-milk intake, human milk macronutrient content, and influencing factors. American Journal of Clinical Nutrition. 1994;59(3). doi:10.1093/ajcn/59.3.600.
  9. Liao Y, Alvarado R, Phinney B, Lönnerdal B. Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res. 2011;10(4). doi:10.1021/pr101028k.
  10. Lönnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003;77(6). doi:10.1093/ajcn/77.6.1537s.
  11. Verd S, Ginovart G, Calvo J, Ponce-Taylor J, Gaya A. Variation in the Protein Composition of Human Milk during Extended Lactation: A Narrative Review. Nutrients. 2018;10(8). doi:10.3390/NU10081124.
  12. Sherwood L. Human Physiology: From Cells to Systems, 9th Revised Ed.; 2019.
  13. Lönnerdal B. Human milk proteins: Key components for the biological activity of human milk. In: Advances in Experimental Medicine and Biology. Vol 554. ; 2004. doi:10.1007/978-1-4757-4242-8_4.
  14. Nagasawa T, Kiyosawa I, Fukuwatari Y, Kitayama T, Uechi M, Hyodo Y. α-Lactalbumin and Serum Albumin in Human Milk. J Dairy Sci. 1973;56(2). doi:10.3168/jds.S0022-0302(73)85142-2.
  15. Moman RN, Gupta N, Varacallo M. Physiology, Albumin. [Updated 2022 Jan 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459198/.
  16. Chang R, Holcomb JB. Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock. 2016 Jul;46(1):17-26. doi: 10.1097/SHK.0000000000000577. PMID: 26844975; PMCID: PMC4905777.
  17. Rothschild MA, Oratz M, Schreiber SS. Hepatology. 1988; 8(2): 385-401. doi: 10.1002/hep.1840080234.
  18. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declère AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013; 310(17):1809-17. doi: 10.1001/jama.2013.280502.
  19. Kulski JK, Hartmann PE. Changes in human milk composition during the initiation of lactation. Australian Journal of Experimental Biology and Medical Science. 1981;59(1). doi:10.1038/icb.1981.6.

Included in

Biochemistry Commons

Share

COinS