•  
  •  
 

Abstract

This study determines how curing temperatures, aging condition, and hydrated lime contents affect the unconfined compressive strength (UCS), modulus of elasticity, and workability of low-alkaline concrete. Samples were prepared in two different groups to determine the optimum hydrated lime content and aging conditions to assess the mutual effect of NaOH molarity and curing temperature, that is, 70 °C for 48 h or room temperature, on samples with and without lime. The results showed that the increase in hydrated lime content affected alkali concentration. The samples with lime exhibited a clear peak in UCS (6 M NaOH) compared with the continuous increase for the samples without lime. Lime content had a positive effect on eliminating heat curing and prolonging aging time to enhance the Young’s modulus and compressive strength. This result is promising for in-situ concreting. Similar to the effect of alkali concentration, lime contributed to the loss in slump value. The scanning electron microscopy images showed the formation of N-(C)-A-S-H gels as the main reaction products. Moreover, internal cracking contributed to the lower UCS of samples with 9 M NaOH compared with those with 6 M NaOH.

References

J.L. Provis, J.S. Van Deventer (Eds.), Alkali Activated Materials: State-of-the-art Report, RILEM TC 224-AAM, Springer Science Business Media, Berlin, 2014, p.13.

E.K. Najafi, R.J. Chenari, M. Payan, M. Arabani, Bull. Eng. Geol. Environ. 80/5 (2021) 4111.

J. Davidovits, Proceedings of the 1st International Conference on Geopolymer ‘88, Compiegne, Paris, 1988, p.25.

L. Weng, K. Sagoe-Crentsil, J. Mater. Sci. 42/9 (2007) 2997.

J. Parveen, D. Singhal, M.T. Junaid, B.B. Jindal, A. Mehta, Constr. Build. Mater. 180 (2018) 298.

A.V. Nakum, N.K. Arora, Mater. Today-Proc. 62/6 (2022) 4168.

E.K. Najafi, Adv. Cem. Res. 34/11 (2022) 518.

N. Ranjbar, A. Kashefi, M.R. Maheri, Cement and Concrete Composites, 86 (2018) 8.

H.S. Gökçe, M. Tuyan, K. Ramyar, M.L. Nehdi, J. Mater. Civ. Eng. 32/2 (2020) 04019350.

R.M. Hamidi, Z. Man, L.Z. Azizli, Proc. Eng. 148 (2016) 189-193.

B.S. Gebregziabiher, R.J. Thomas, S. Peethamparan, Constr. Build. Mater. 113 (2016) 783.

F. Nejati, S. Ahmadi, S.A. Edalatpanah, Int. J. Struct. Int. 10/4 (2019) 515.

E. Álvarez-Ayuso, X. Querol, F. Plana, A. Alastuey, N. Moreno, M. Izquierdo, M., et al. J. Hazard. Mater. 154/1–3 (2008) 175.

A.H. Aini, H. Masoomi, F. Nejati, J. Basic Appl. Sci. Res. 2/3 (2012) 2405.

A. Hajimohammadi, J.S.J. van Deventer, Int. J. Miner. Process. 153 (2016) 80.

G. Görhan, G. Kürklü, Compos. Part B-Eng. 58 (2014) 371.

S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, R. Hakkou, J. Clean. Prod. 185 (2018) 891.

J. He, W. Bai, W. Zheng, J. He, G. Sang, Constr. Build. Mater. 289 (2021) 123201.

C. Chan, M. Zhang, Constr. Build. Mater. 362 (2023) 129709.

A.M. Rashad, Constr. Build. Mater. 79 (2015) 379.

Specification for Concrete Aggregates, ASTM Standard C33, 2003, West Conshohocken, PA, 2006.

Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM Standard C128, West Conshohocken, PA, 2016.

ASTM Standard C127 (2016). “Standard test method for relative density (specific gravity) and absorption of coarse aggregate.” West Conshohocken, PA, DOI: 10.1520/C0127-15.

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in Concrete, ASTM Standard C168-12a, West Conshohocken, PA, 2012.

Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM C143/C143M-03, West Conshohocken, PA, 2017.

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM C39/C39M, West Conshohocken, PA, 2016.

Pacheco-Torgal, F., Jalali, S., Gomes, J. C. (2009). “Utilization of mining wastes to produce geopolymer binders.” “Geopolymers structure, processing, properties and industrial applications,” Woodhead Publishing, Sawston, 267-293.

P. Nath, P.K. Sarker, Constr. Build. Mater. 66 (2014) 163.

H. Castillo, H. Collado, T. Droguett, S. Sánchez, M. Vesely, P. Garrido, S. Palma, Minerals. 11/12 (2021) 1317.

C.C. Ban, P.W. Ken, M. Ramli, J. Mater. Civ. Eng. 29/3 (2017) 04016237.

M.Z.N. Khan, F.U.A. Shaikh, Y. Hao, H. Hao, J. Mater. Civ. Eng. 30/2 (2018) 04017267.

S. Song, H.M. Jennings, H. M. (1999). Cement and Concrete Research, 29(2), 159-170.

C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. Van Deventer, Cement Concrete Res. 38/4 (2008) 554.

T. Phoo-ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Constr. Build. Mater. 91 (2015) 8.

E.L. Mohammadi, E.K. Najafi, P.Z. Ranjbar, M. Payan, R.J. Chenari, B. Fatahi, Constr. Build. Mater. 393 (2023) 132083.

I. García-Lodeiro, O. Maltseva, A. Palomo, Á. Fernández-Jiménez, Rev. Rom. Mater. 42/4 (2012) 330.

M. Zribi, B. Samet, S. Baklouti, J. Non-Cryst. Solids. 511 (2019) 62.

L. Manjarrez, A. Nikvar-Hassani, R. Shadnia, L. Zhang, J. Mater. Civil Eng. 31/8 (2019) 04019156.

Standard specification for loadbearing concrete masonry units, ASTM Standard C90, West Conshohocken, PA, 2011.

National Home Building Registration Council, Annual Report, 2018.

P. Rovnaník, Constr. Build. Mater. 24/7 (2010) 1176.

X. Tian, W. Xu, S. Song, F. Rao, L. Xia, Chemosphere. 253 (2020) 126754.

Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM Standard C469, West Conshohocken, PA, 2014.

K.H. Yang, J.K. Song, J. Mater. Civil Eng. 21/3 (2009) 119.

B. Walkley, R. San Nicolas, M.A. Sani, G.J. Rees, J.V. Hanna, J.S.J. van Deventer, J.L. Provis, Cement Concrete Res. 89 (2016) 120.

J. Yang, D. Li, Y. Fang, Materials. 10/7 (2017) 695. [47] F. Nejati, M. Hosseini, A. Mahmoudzadeh, Int. J. Struct. Integ. 8/3 (2017) 326

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.