•  
  •  
 

Abstract

The water pollution caused by diamond mine activities can kill aquatic life. In this work, we used phytoremediation and filtration to treat pond water polluted by the tailings of a diamond mine located in South Kalimantan, Indonesia. Einchhornia crassipes (water hyacinth) was utilized as the biomass for the phytoremediation process. Gravel (10–15 mm) and sand (0.1–1 mm) were used as filter media in the simple filtration setup, using an up-flow system (bottom to top). In the experiment, 16 L of diamond tailing water was poured into five phytoremediation reactors (each 60 L in volume), which were then tested over seven days. A pretreatment analysis of the tailings water showed that its biochemical oxygen demand (BOD) of 8.9 mg L−1 and chemical oxygen demand (COD) of 22 mg L−1 exceeded the national maximum standards of 2 mg L−1 and 10 mg L−1, respectively. The experimental results demonstrate that both phytoremediation and filtration could increase the dissolved oxygen concentration (4.7 mg.L−1) and reduce the BOD (3.2 mg.L−1), COD (6.5 mg.L−1), Fe (0.6 mg.L−1), Mn (0.16 mg.L−1), and ammonia (0.63 mg.L−1) concentrations from those measured in the raw diamond-mine-tailings water. The phytoremediation performance was better than that of filtration. The COD values were successfully reduced to the permissible limit, although the other parameters still failed to meet the government water quality regulation requirements.

Bahasa Abstract

Metode Perbandingan antara Proses Fitoremediasi dan Proses Filtrasi Sederhana untuk Mengolah Air Bekas Galian Tambang Intan. Polusi air yang disebabkan aktivitas pertambangan dapat membunuh kehidupan akuatik. Penelitian ini bertujuan untuk mengolah air tercemar bekas galian tambang intan di Kalimantan Selatan, Indonesia menggunakan proses fitoremediasi dan filtrasi sederhana. Eichornia Crassipes (eceng gondok) digunakan sebagai biomassa selama proses fitoremediasi. Media penyaring seperti kerikil (10-15 mm) dan pasir (0,1-1 mm) ditambahkan ke dalam reaktor filtrasi sederhana yang memiliki aliran atas (dari bawah ke atas). 16 L air bekas galian tambang intan dituangkan ke dalam 5 reaktor (volume 60 L) dan di uji selama 7 hari pada proses fitoremediasi menggunakan metode batch. Analisis pra-perlakuan air tercemar bekas galian tambang menunjukkan BOD sebesar 8,9 mg.L-1 dan COD sebesar 22 mg.L-1 melebihi maksimum nasional yaitu 2 dan 10 mg.L-1, berturut-turut. Berdasarkan eksperimen, fitoremediasi dan filtrasi memiliki kemampuan untuk meningkatkan DO (4.7 mg.L-1) dan mengurangi BOD (3.2 mg.L-1), COD (6.5 mg.L-1), Fe (0.6 mg.L-1), Mn (0.16 mg.L-1) serta ammonia (0.63 mg.L-1) dari nilai awal air bekas galian tambang. Fitoremediasi menghasilkan performa lebih baik dalam penyisihan dibandingkan filtrasi. Nilai akhir COD memenuhi baku mutu, sedangkan parameter lain tidak memenuhi peraturan pemerintah mengenai kualitas air.

References

P.K. Gupta, K. Nikhil, K. Mayank, Int. J. Res. Eng. Technol. 4 (2015).

L.K. Spencer, S.D. Dikinis, P.C. Keller, Gems & Gemology 24 (1988) 67.

V.M. Ngole-Jeme, P. Fantke, PloS one, 12 (2017) e0172517.

J. Marrugo-Negrete, G. Enamorado-Montes, J. Durango-Hernández, J. Pinedo-Hernández, S. Díez, Chemosphere 167 (2017) 188.

O.C. Türker, C. Türe, H. Böcük, A. Yakar, Ecol. Eng.94 (2016) 65.

K.L. Johnson, P.L. Younger, Eng. Geol. 85 (2006) 53.

M. Wang, D.Q. Zhang, J.W. Dong, S.K. Tan, J. Environ. Sci. 57 (2017) 293.

T.D. de Souza, A.C. Borges, A. Teixeira de Matos, R.W. Veloso, A.F. Braga, Int. J. Phytoremediat. 20 (2018) 1129.

S. Tiwari, S. Dixit, N. Verma, Environ. Monit. Assess. 129 (2007) 253.

P. Gupta, S. Roy, A.B. Mahindrakar, Resour. Environ. 2 (2012) 202.

D.K. Wang, M. Elma, J. Motuzas, W.-C. Hou, D.R. Schmeda-Lopez, T. Zhang, X. Zhang, Carbon 109 (2016) 182.

E.L.A. Rampun, M. Elma, A. Rahma, A.E. Pratiwi, Membr. Technol. 2019 (2019) 5.

A. Rahma, M. Elma, M. Mahmud, C. Irawan, A.E. Pratiwi, E.L.A. Rampun, J. Scienctific Appl. Chem. 22 (2019) 8.

J. Hoslett, T.M. Massara, S. Malamis, D. Ahmad, I. van den Boogaert, E. Katsou, B. Ahmad, H. Ghazal, S. Simons, L. Wrobel, H. Jouhara, Sci. Total Environ. 639 (2018) 1268.

T. Sikder, Z. Hossain, P.B. Pingki, J.D. Biswas, M. Rahman, S. Hossain, T. Saito, M. Kurasaki, Future Cities Environ. 2 (2016) 5.

L. Huisman, W.E. Wood, Slow sand filtration, Geneva: World Health Organization, 1974.

L. Rizzo, A. Fiorentino, M. Grassi, D. Attanasio, M. Guida, J. Environ. Chem. Eng. 3 (2015) 122.

L.T.X. Thuy, L.T. Suong, N.T.S. Mai, H.H. Quyen, M. Yasuzawa, Int. J. Mod. Phys. B 32 (2018) 1840079.

H.T.T. Dang, H.D. Tran, S.H. Tran, M. Sasakawa, R.M. Narbaitz, Water Qual. Res. J. 53 (2018) 133.

I.W.Q. standard, in, 2001.

G. Prasad, R. Rajput, A. Chopra, J. Appl. Sci. Environ. Manag. 10 (2006) 72.

S. Rezania, M.F.M. Din, S.M. Taib, F.A. Dahalan, A.R. Songip, L. Singh, H. Kamyab, Int. J. Phytoremediat. 18 (2016) 679.

N. Mujere, Water Hyacinth: Characteristics, Problems, Control Options, and Beneficial Uses, in: Impact of Water Pollution on Human Health and Environmental Sustainability, IGI Global, 2016, p.343.

M. Meerhoff, N. Mazzeo, B. Moss, L. RodríguezGallego, Aquatic Ecol. 37 (2003) 377.

A.N. Colli, R. Toelzer, M.E.H. Bergmann, J.M. Bisang, Electrochim. Acta 100 (2013) 78.

T. Sricoth, W. Meeinkuirt, J. Pichtel, P. Taeprayoon, P. Saengwilai, Environ. Sci. Pollut. Res. 25 (2018) 5344.

M. Kumari, B.D. Tripathi, Ecol. Eng. 62 (2014) 48.

A.S. Alsaqqar, B.H. Khudair, A.M. Al-Sulaiman, Assoc. Arab Univ. J. Eng. Sci. (2018) 169.

E. Winanti, E. Rahmadyanti, I. Fajarwati, IOP Conference Series Materials Sci. Eng. 288 (2018) 012062.

M. Šereš, T. Hnátková, J. Vymazal, T. Vaněk, Chem. J. Moldova, 12 (2017).

S.G. Abdelhakeem, S.A. Aboulroos, M.M. Kamel, J. Adv. Res. 7 (2016) 803.

J. Vymazal, Water, 2 (2010) 530.

C. Guo, Y. Cui, B. Dong, Y. Luo, F. Liu, S. Zhao, H. Wu, Bioresource Technol. 238 (2017) 461.

M. Elbana, F. Ramírez de Cartagena, J. PuigBargués, Agric. Water Manag. 111 (2012) 27.

K. Khengaoui, M.H. Mahammed, Y. Touil, A. Amrane, Energy Procedia 74 (2015) 398.

M. D'Alessio, B. Yoneyama, M. Kirs, V. Kisand, C. Ray, Sci. Total Environ. 524-525 (2015) 124.

J.H. Potgieter, S.S. Potgieter-Vermaak, J. Modise, N. Basson, Water Air Soil Pollution 162 (2005) 61.

M.W. Jayaweera, J.C. Kasturiarachchi, R.K. Kularatne, S.L. Wijeyekoon, J. Environ. Manage. 87 (2008) 450.

S. Khan, I. Ahmad, M.T. Shah, S. Rehman, A. Khaliq, J. Environ. Manage. 90 (2009) 3451.

R.R. Goulet, F.R. Pick, Water Sci. Technol. 44 (2001) 421.

D.M. McKnight, B.A. Kimball, R.L. Runkel, Hydrological Process. 15 (2001) 1979.

N. Mbedzi, D. Ibana, L. Dyer, R. Browner, AIP Conference Proceedings, 1805 (2017).

H.S. Majdi, M.S. Jaafar, A.M. Abed, South Afr. J. Chem. Eng. 28 (2019) 39.

R. Yunus, N.S. Prihatini, Jurnal Sainsmat, VII (2018) 73.

S. Rezania, M. Ponraj, A. Talaiekhozani, S.E. Mohamad, M.F. Md Din, S.M. Taib, F. Sabbagh, F.M. Sairan, J. Environ. Manag. 163 (2015) 125.

Jasmidi, E. Sugiharto, Mudjiran, Indonesian J. Chem. 1 (2002) 11.

S.A. Chaudhry, T.A. Khan, I. Ali, J. Mol. Liq. 236 (2017) 320.

W.H.T. Ting, I.A.W. Tan, S.F. Salleh, N.A. Wahab, J. Water Process Eng. 22 (2018) 239.

Y. Deng, F. Ni, J. Water Resour. Prot. 5 (2013) 1203.

W. Wu, A. Liu, K. Wu, L. Zhao, X. Bai, K. Li, M.A. Ashraf, L. Chen, Braz. Arch. Biol. Technol. 59 (2016) 1.

A.W. Mayo, E.E. Hanai, O. Kibazohi, Phys. Chem. Earth Parts A/B/C, 72-75 (2014) 88.

Z. Wang, Z. Zhang, J. Zhang, Y. Zhang, H. Liu, S. Yan, Chemosphere 89 (2012) 1255.

T. Aoi, T. Hayashi, Water Sci. Technol. 34 (1996) 407.

A.W. Mayo, E.E. Hanai, Phys. Chem. Earth Parts A/B/C, 100 (2017) 170.

S. Rezania, M. Ponraj, M. Fadhil Md Din, S. Chelliapan, F. Md Sairan, Desalin. Water Treat. 57 (2016) 360.

H. Qin, Z. Zhang, M. Liu, H. Liu, Y. Wang, X. Wen, Y. Zhang, S. Yan, Ecol. Eng. 95 (2016) 753.

S. Fazal, B. Zhang, Q. Mehmood Ecol. Eng. 84 (2015) 551.

A. Valipour, K.V. Raman, Y.-H. Ahn, Water, 7 (2015).

P. Saha, O. Shinde, S. Sarkar, Int. J. Phytoremediat. 19 (2017) 87.

J. Gao, H. Dang, L. Liu, L. Jiang, Desalin. Water Treat. 55 (2015) 381.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.