•  
  •  
 

Abstract

A digital rainbow hologram (DRH) is a potential next-generation three-dimensional display media for the development of modern and smart electronics devices. It is one of the methods that can support the characteristic whereby a realistic display media occupies the space that the real object would have occupied. Since a rainbow hologram records a large amount of spatial or temporal frequency component from the object that represents the rainbow spectrum, a large amount of information needs to be decoded digitally. In this paper, to reconstruct a DRH, we propose a novel method based on the modulation of red, green, and blue spectral components of light by wavelet transform (WT) in the recording and reconstruction processes, which we digitally simulated in a computer using an algorithm. In the simulations, continuous WT (CWT) was based on Haar, Daubechies, Meyer, and Coiflet wavelets with a level set to be two. Based on the results of simulations using CWT, the optimum distance between object and hologram was 30 cm, and the maximum compression was 88.55%, which was achieved with Meyer wavelet. Moreover, optimal de-noising and optimal localization of spatial frequency component based on red, green, and blue spectral components were also achieved using the proposed method.

Bahasa Abstract

Transformasi Riak Gelombang pada Hologram Pelangi Digital Berbasis pada Kompresi Spektrum untuk Peningkatan Kualitas Media Tampilan 3D. Suatu hologram pelangi digital (digital rainbow hologram (DRH)) merupakan suatu media tampilan tiga dimensi generasi selanjutnya yang potensial untuk perkembangan alat-alat elektronik cerdas dan modern. Salah satu metode yang dapat mendukung karakteristik di mana suatu media tampilan yang realistis menempati ruang yang akan ditempati benda nyata. Karena suatu hologram pelangi merekam sejumlah besar komponen frekuensi ruang atau waktu sementara dari obyek yang mewakili spektrum pelangi, sejumlah besar informasi perlu didekodekan secara digital. Dalam naskah ini, untuk merekonstruksi suatu DRH, kami mengusulkan suatu metode baru berdasarkan pada modulasi komponen spektrum cahaya merah, hijau dan biru melalui trannsformasi riak gelombang (wavelet transform (WT)) dalam proses perekaman dan perekonstruksian, yang kami simulasikan secara digital di dalam suatu komputer dengan menggunakan suatu algoritma. Di dalam simulasi tersebut, WT kontinu (CWT) didasarkan pada riak gelombang Haar, Daubechies, Meyer, dan Coiflet dengan suatu level yang ditetapkan berharga dua. Berdasarkan pada hasil-hasil simulasi dengann menggunakan CWT, jarak optimum antara obyek dan hologram adalah 30 cm, dan kompresi maksimum adalah 88.55%, yang diperoleh dengan riak gelombang Meyer. Lebih jauh lagi, pengurangan derau (de-noising) yang optimum dan lokasilasi yang optimum dari komponen frekuensi ruang berdasarkan pada komponen spektrum merah, hijau, dan biru juga diperoleh dengan menggunakan metode yang diusulkan.

References

  1. L.T. Bang, Z. Ali, P.D. Quang, J-H. Park, N. Kim, Optics Express, 19/9 (2011) 8019.
  2. T.J. Naughton, B. Javidi, Opt. Eng. 43/10 (2004) 2233.
  3. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, B. Javidi, Proc. SPIE 4471, San Diego, CA, United States, 2001, p.235.
  4. E. Darakis, J.J. Soraghan, Appl. Optics, 46/3 (2007) 351.
  5. J. Zhong, J. Weng, Reconstruction of Digital Holo-gram by use of the Wavelet Transform. In Holog-raphy, Research and Technologies. InTech. 2011.
  6. K. Viswanathan, P. Gioia, L. Morin, SPIE Confer-ence on Applications of Digital Image Processing XXXVI, Aug 2013, San Diego, United States, 2013.
  7. A. Sharma, G. Sheoran, Z.A. Jaffery, Optics Lasers Eng. 46/1 (2008) 42.
  8. Kurbatova, E.A., P.A. Cheremkhin, N.N. Evtikhiev, IOP Publishing, J. Physics: Conference Series, 737/1 (2016) 012071.
  9. A. Sharma, G. Sheoran, Z.A. Jaffery. In Ninth In-ternational Symposium on Laser Metrology. Inter-national Society for Optics and Photonics. 7155 (2008) 71551L.
  10. Y.S. Kim, T. Kim, S.S. Woo, H. Kang, T.C. Poon, C. Zhou, Optics Express, 21/7 (2013) 8183.
  11. A.E. Shortt, T.J. Naughton, B. Javidi, IEEE Trans. Image Process. 16/6 (2007) 1548.
  12. Y. Frauel, T.J. Naughton, O. Matoba, E. Taja-huerce, et al., Proc. IEEE, 94/3 (2006) 636.
  13. T.Y. Supiyanti, U. Darusalam, J. Eng. Appl. Sci., 11 (2016) 4727.
  14. T.-C. Poon, J.-P. Liu, Introduction to Modern Digital Holography with MATLAB. Cambridge University Press, England, U.K.. 2014, p.223.
  15. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Math-ematics, SIAM: Society for Industrial and Applied Mathematics; 1 edition, Pennsylvania, United States, 1992, p.377.
  16. P. Girshovitz, N.T. Shaked, Optics Express, 23/7 (2015) 8773.
  17. O. Backoach, S. Kariv, P. Girshovitz, N.T. Shaked, Optics Express, 24/4 (2016) 3177.
  18. I.Y. Filippov, M.S. Kovalev, G.K. Krasin, S.B. Odi-nokov, P.A. Ruchka, N.G. Stsepuro, Opt. Mem. Neural Netw. 27/1 (2018) 32.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.