Abstract
Jakarta International Container Terminal (JICT) in Tanjung Priok Port , which serves export and import containers, can serve up to 5500 TEUs daily. However, no more than 1% of the total containers are transported by freight trains, meaning that 99% of container distribution from industrial areas is carried by trailer trucks. This condition causes a long queue at the container terminal entrance, resulting in delays in the services as well. Currently, Tanjung Priok Port is connected to rail transportation from Cikarang dry port with the frequency of twice a day with 30 flatcars (FC) for each trip. The capacity of one series of freight trains from Cikarang dry port to Tanjung Priok Port can reach 30 Feus or 60 Teus. However, the container distribution using freight trains is still less optimal because of the double handling at the JICT emplacement which is located outside JICT and the use of trailer trucks to move the containers from the area to JICT. The cost of transporting export and import containers always increases year by year because of the slow transportation due to inefficiency of the container depot location in Tanjung Priok area. In this research, the method used to determine the efficiency of container transportation is divided into three scenarios. The first scenario is when the container is fully transported by truck from the industrial area. The second scenario is when the container is transported by train and handled twice while entering JICT. Finally, the third scenario is when the JICT emplacement is located inside the JICT area, changing the business process of containers coming in and out, needing no stacking in the JICT container yard, relocating the container depot placement, consolidating containers, and automating equipment at JICT to reduce the cost and time of containers for export and import. After analyzing the costs and time of the three scenarios, it was found that the third scenario could reduce travel costs and shorten container time when exporting and importing. The 3rd scenario can reduce the cost by almost 50% from the 1st and 2nd scenarios due to container consolidation.
Bahasa Abstract
Terminal peti kemas JICT yang melayani eksport dan import kontainer bisa melayani 5500 Teus setiap harinya. Namun tidak lebih dari 1% dari total kontainer terangkut dengan kereta barang, artinya 99% distribusi kontainer dari kawasan industri dibawa dengan truk trailer. Akibatnya antrian di pintu masuk terminal peti kemas imbas dari kedatangan kontainer dan pelayanan di area terminal peti kemas juga mengalami keterlambatan. Saat ini, Pelabuhan Tanjung Priok terkoneksi dengan rel dari dryport Cikarang, dengan frekuensi dua kali sehari dan sekali perjalanan terdapat 30 gerbang datar (GD) sehingga kapasitas satu rangkaian kereta barang dari dryport Cikarang hingga Pelabuhan Tanjung Priok bisa 30 Feus atau 60 Teus. Namun distribusi kontainer menggunakan kereta kurang optimal karena terjadi double handling di emplasement JICT, area ini berada diluar JICT dan perpindahan kontainer dari emplasement JICT untuk masuk ke JICT tetap menggunakan truk trailer. Biaya pengangkutan kontainer ekspor dan impor selalu meningkat dari tahun ke tahun. Karena lambatnya pengangkutan akibat inefisiensi lokasi depo kontainer yang berada di area Tanjung Priok. Metode penelitian untuk mengetahui efisiensi angkutan kontainer menggunakan beberapa skenario yang dibuat dalam metode ini terbagi menjadi tiga (3), yaitu skenario pertama yaitu kontainer diangkut full oleh truk dari kawasan industri, kemudian skenario kedua dimana kontainer diangkut kereta barang dan terjadi double handling masuk ke JICT. Dan yang terakhir skenario ketiga jika emplasement JICT berada di dalam area JICT, mengubah bisnis proses kontainer datang dan keluar tidak perlu stacking di container yard JICT, merelokasi letak depo kontainer, konsolidasi kontainer serta automatisasi peralatan di JICT dapat menurunkan biaya dan waktu kontainer untuk eksport dan import. Setelah menganalisa biaya dan waktu dari ketiga skenario tersebut, diperoleh bahwa skenario ketiga bisa menurunkan biaya perjalanan dan mempersingkat waktu kontainer ketika akan eksport dan import. Skenario tiga memberikan hasil pengurangan biaya hampir 50% dari skenario 1 dan 2 karena adanya konsolidasi kontainer.
References
Anwar Septiana, M., Hidayattulloh, R., Machmudin, J., & Anggraeni, N. F. (n.d.). OPTIMASI BIAYA PENGIRIMAN KELAPA MENGGUNAKAN MODEL TRANSPORTASI METODE STEPPING STONE (Vol. 5, Issue 2).
Bozuwa, J., Gille, J., Modijefsky, M., & Van Schijndel, M. (2009). Dryport Emmen-Coevorden Strengthening the logistic hub Final Report Client: City of Emmen, City of Coevorden, Province of Drenthe ECORYS Nederland BV.
Castrellon, J. P., Sanchez-Diaz, I., Roso, V., Altuntas-Vural, C., Rogerson, S., Santén, V., & Kalahasthi, L. K. (2023). Assessing the eco-efficiency benefits of empty container repositioning strategies via dry ports. Transportation Research Part D: Transport and Environment, 120. https://doi.org/10.1016/j.trd.2023.103778
de Jong, G., Kouwenhoven, M., Ruijs, K., van Houwe, P., & Borremans, D. (2016). A time-period choice model for road freight transport in Flanders based on stated preference data. Transportation Research Part E: Logistics and Transportation Review, 86, 20–31. https://doi.org/10.1016/j.tre.2015.12.004
Frisch, S., Hungerländer, P., Jellen, A., Lackenbucher, M., Primas, B., & Steininger, S. (2023). Integrated freight car routing and train scheduling. Central European Journal of Operations Research, 31(2), 417–443. https://doi.org/10.1007/s10100-022-00815-3
He, J., Huang, Y., Yan, W., & Wang, S. (2015). Integrated internal truck, yard crane and quay crane scheduling in a container terminal considering energy consumption. Expert Systems with Applications, 42(5), 2464–2487. https://doi.org/10.1016/j.eswa.2014.11.016
Irawan, M. Z., Belgiawan, P. F., Tarigan, A. K. M., & Wijanarko, F. (2020). To compete or not compete: exploring the relationships between motorcycle-based ride-sourcing, motorcycle taxis, and public transport in the Jakarta metropolitan area. Transportation, 47(5), 2367–2389. https://doi.org/10.1007/s11116-019-10019-5
Izadi, A., Nabipour, M., & Titidezh, O. (2020). Cost Models and Cost Factors of Road Freight Transportation: A Literature Review and Model Structure. In Fuzzy Information and Engineering. Taylor and Francis Ltd. https://doi.org/10.1080/16168658.2019.1688956
Kordnejad, B. (2014). Intermodal Transport Cost Model and Intermodal Distribution in Urban Freight. Procedia - Social and Behavioral Sciences, 125, 358–372. https://doi.org/10.1016/j.sbspro.2014.01.1480
Liu, C. I., Jula, H., Vukadinovic, K., & Ioannou, P. (2004). Automated guided vehicle system for two container yard layouts. Transportation Research Part C: Emerging Technologies, 12(5), 349–368. https://doi.org/10.1016/j.trc.2004.07.014
Luo, J. X. (2019). Fully automatic container terminals of Shanghai Yangshan Port phase IV. Frontiers of Engineering Management, 6(3), 457–462. https://doi.org/10.1007/s42524-019-0053-0
Roy, D., & de Koster, R. (2018). Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles. European Journal of Operational Research, 266(3), 895–910. https://doi.org/10.1016/j.ejor.2017.10.031
Sáez-Carramolino, L., Sánchez-Pérez, A., Pérez-Cervera, C., & Furió-Pruñonosa, S. (2019). Just-in-time rail shuttle service feasibility study for the port of valencia. WIT Transactions on the Built Environment, 187, 135–147. https://doi.org/10.2495/MT190131
Schulte, F., Lalla-Ruiz, E., González-Ramírez, R. G., & Voß, S. (2017). Reducing port-related empty truck emissions: A mathematical approach for truck appointments with collaboration. Transportation Research Part E: Logistics and Transportation Review, 105, 195–212. https://doi.org/10.1016/j.tre.2017.03.008
Xu, B., Wang, H., & Li, J. (2023). Evaluation of operation cost and energy consumption of ports: comparative study on different container terminal layouts. Simulation Modelling Practice and Theory, 127. https://doi.org/10.1016/j.simpat.2023.102792
Yan, B., Jin, J. G., Zhu, X., Lee, D. H., Wang, L., & Wang, H. (2020). Integrated planning of train schedule template and container transshipment operation in seaport railway terminals. Transportation Research Part E: Logistics and Transportation Review, 142. https://doi.org/10.1016/j.tre.2020.102061
Yang, Y. C., & Chang, W. M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business and Management, 8, 67–76. https://doi.org/10.1016/j.rtbm.2013.04.002
Zhang, X., Zeng, Q., & Yang, Z. (2019). Optimization of truck appointments in container terminals. Maritime Economics and Logistics, 21(1), 125–145. https://doi.org/10.1057/s41278-018-0105-0
Recommended Citation
Imayanti, Indah; Soehodho, Sutanto; and Yusuf, Nahry
(2024)
"ANALYSIS OF COST AND TIME EFFICIENCY IN CONTAINER DISTRIBUTION BETWEEN CONTAINER TRUCK AND FREIGHT TRAIN FROM INDUSTRIAL AREA TO PORT,"
Smart City: Vol. 4:
Iss.
2, Article 10.
DOI: 10.56940/sc.v4.i2.8
Available at:
https://scholarhub.ui.ac.id/smartcity/vol4/iss2/10
Included in
Civil Engineering Commons, Industrial Engineering Commons, Transportation Engineering Commons