•  
  •  
 

Abstract

This paper presents a platform development plan for a public vaccination decentralized data base based on Blockchain technology. Vaccination is a medical practice that allows a human body to produce a specific antibody as a means of developing a preventive measure and reducing the risk of contracting a particular disease. Systematic vaccination data recording is an utmost important system that is required particularly during the Covid-19 pandemic. The recording mechanism should utilize the state-of-the-art information and communication technology (ICT). For faster vaccination data recording, it is common to use digital technology, making the health care process faster thus decreasing time needed for the vaccination process.

Data related to medical records, i.e. vaccination data records, are essential for the continuity of care of the patients. For health professionals, medical records provide an insight on the clinical judgment being exercised at the time. The presence of a complete, up-to-date and accurate medical record including all vaccination received by a patient can make all the difference to the outcome of a treatment. Although today the digital medical records have been implemented in different traditional database, these database is still very much disintegrated and prone to the happening of natural disaster. Access to medical records will become increasingly important as medical treatments become more complicated and the increase of aging population, while disasters will likely continue to occur with regular frequency.

In order to tackle the problem, we propose a blockchain-based application with decentralized storage to provide easy tracing of vaccinated people while maintaining the availability and the resilience of the data stored. Blockchain technology is applied to ensure that the data remain available and secure even during natural disaster occurrence. The decentralized application proposed in this paper is built using Hyperledger Fabric, Django, and cURL. The application is deployed in the cloud using Amazon Web Services (AWS).

Bahasa Abstract

Artikel ini menyajikan rencana pengembangan platform untuk basis data desentralisasi vaksinasi publik berdasarkan teknologi Blockchain. Vaksinasi adalah praktik medis yang memungkinkan tubuh manusia untuk menghasilkan antibodi spesifik sebagai sarana untuk mengembangkan tindakan pencegahan dan mengurangi risiko tertular penyakit tertentu. Pencatatan data vaksinasi secara sistematis adalah sistem yang penting dan diperlukan, terutama selama pandemi Covid-19. Mekanisme pencatatannya harus memanfaatkan teknologi informasi dan komunikasi (TIK) yang mutakhir. Untuk pencatatan data vaksinasi yang lebih cepat, biasanya menggunakan teknologi digital, sehingga proses pelayanan kesehatan menjadi lebih cepat sehingga mengurangi waktu yang dibutuhkan untuk proses vaksinasi. Data yang berkaitan dengan rekam medis, yaitu rekam data vaksinasi, sangat penting untuk kelangsungan perawatan pasien. Bagi pekerja bidang kesehatan, rekam medis memberikan wawasan tentang penilaian klinis yang dilakukan pada saat itu. Adanya rekam medis yang lengkap, terkini dan akurat termasuk semua vaksinasi yang diterima oleh pasien dapat membuat semua perbedaan pada hasil pengobatan. Meskipun saat ini rekam medis digital telah diimplementasikan dalam database tradisional yang berbeda, database tersebut masih sangat hancur dan rawan terjadi bencana alam. Akses ke rekam medis akan menjadi semakin penting karena perawatan medis menjadi lebih rumit dan peningkatan populasi yang menua, sementara bencana kemungkinan akan terus terjadi dengan frekuensi yang teratur. Untuk mengatasi masalah tersebut, kami mengusulkan aplikasi berbasis blockchain dengan penyimpanan terdesentralisasi untuk memudahkan pelacakan orang yang divaksinasi sambil menjaga ketersediaan dan ketahanan data yang disimpan. Teknologi Blockchain diterapkan untuk memastikan bahwa data tetap tersedia dan aman bahkan saat terjadi bencana alam. Aplikasi desentralisasi yang diusulkan dalam makalah ini dibangun menggunakan Hyperledger Fabric, Django, dan cURL. Aplikasi ini dipasang di cloud menggunakan Amazon Web Services (AWS).

References

[1] World Health Organization, "Vaccines and immunization: What is vaccination?," 19 July 2021. [Online]. Available: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-vaccination/. [Accessed 17 August 2021].

[2] "SDLC - Waterfall Model," [Online]. Available: https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm. [Accessed 14 June 2021].

[3] "Django Project MVT Structure," [Online]. Available: https://www.geeksforgeeks.org/django-project-mvt-structure/. [Accessed 14 June 2021].

[4] "Develop Hyperledger Fabric Chaincode," [Online]. Available: https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/managed-blockchain-hyperledger-develop-chaincode.html. [Accessed 14 June 2021].

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[6] R. Grinberg, “Bitcoin: An innovative alternative digital currency,” Hastings Sci. & Tech. LJ, vol. 4, pp. 159, 2012.

[7] P. Sylim, F. Liu, A. Marcelo, and P. Fontelo, “Blockchain technology for detecting falsified and substandard drugs in distribution: Pharmaceutical supply chain intervention,” JMIR Res. Protocols, vol. 7, no. 9, pp. e10163, 2018.

[8] Y. Zhuang, L. R. Sheets, Y. -W. Chen, Z. -Y. Shae, J. J. P. Tsai and C. -R. Shyu, "A Patient-Centric Health Information Exchange Framework Using Blockchain Technology," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 8, pp. 2169-2176, Aug. 2020, doi: 10.1109/JBHI.2020.2993072.

[9] Y. Zhuang, L. Sheets, Z. Shae, J. J. P. Tsai, and C. R. Shyu, “Applying blockchain technology for health information exchange and persistent monitoring for clinical trials,” inAnnu. Symp. Proc. vol. 2018, pp. 1167–75, 2018.

[10] Y. Zhuang et al., “Applying blockchain technology to enhance clinical trial recruitment,” in AMIA Annu Symp Proc, 2019, vol. 2019, pp. 1277–1285.

[11] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger technologies for biomedical and health care applications,” J. Amer. Med. Inform. Assoc., vol. 24, no. 6, pp. 1211–1220, 2017.

[12] P. Zhang, D. C. Schmidt, J. White, and G. Lenz, “Blockchain technology use cases in healthcare,” in Advances in Computers, vol. 111, Amsterdam, The Netherlands; New York: Elsevier, 2018, pp. 1–541.

[13] T.-T. Kuo, H. Zavaleta Rojas, and L. Ohno-Machado, “Comparison of blockchain platforms: A systematic review and healthcare examples,” J. Amer. Med. Inform. Assoc., vol. 26, no. 5, pp. 462–478, 2019.

[14] R. Burstall and B. Clark, “Blockchain, IP and the fashion industry,” Managing Intell. Prop., vol. 266, pp. 9, 2017.

[15] G. Zyskind and O. Nathan, “Decentralizing privacy: Using blockchain to protect personal data,” in Security and Privacy Workshops (SPW), 2015 IEEE, 2015: IEEE, pp. 180–184.

[16] V. Patel, “A framework for secure and decentralized sharing of medical imaging data via blockchain consensus,” Health Inform. J., pp. 1460458218769699, 2018.

[17] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32, 2014.

[18] R. C. Holt and J. R. Cordy, “The turing programming language,” Commun ACM, vol. 31, no. 12, pp. 1410–1424, 1988.

[19] X. Liang et al., “Provchain: A blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability,” in Proc. 17th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing, 2017: IEEE Press, pp. 468–477.

[20] K. Peterson, R. Deeduvanu, P. Kanjamala, and K. Boles, “A blockchainbased approach to health information exchange networks,” in Proc. NIST Workshop Blockchain Healthcare, 2016, vol. 1, pp. 1–10.

[21] C. Esposito, A. De Santis, G. Tortora, H. Chang, and K.-K. R. Choo, “Blockchain: A panacea for healthcare cloud-based data security and privacy?,” IEEE Cloud Computing, vol. 5, no. 1, pp. 31–37, 2018.

[22] P. Zhang, J. White, D. C. Schmidt, G. Lenz, and S. T. Rosenbloom, “FHIRChain: Applying blockchain to securely and scalably share clinical data,” Comput. and Structural BioTechnol. J., vol. 16, pp. 267–278, 2018.

[23] Mahendradhata Y, Trisnantoro L, Listyadewi S, Soewondo P, Marthias T, Harimurti P, Prawira J. The Republic of Indonesia health system review.

Share

COinS