Excessive diazinon residue in vegetables can endanger human health. Therefore, a simple, fast, and accurate method is needed to detect residue. A conductometric biosensor is a good choice because it also offers high selectivity and sensitivity. The principle of detection of the conductometric biosensor is based on enzymatic hydrolysis of diazinon into O,O diethyl phosphorothiate,2-isopropyl-6-methylpyrimidin-4-ol, and H+ catalyzed by organophosphate hydrolase (OPH). The optimum amount of organophosphate hydrolase added to the screen-printed carbon electrode (SPCE) modified with BSA-glutaraldehyde is 118.5 µg, while the optimum pH is 8.5. This biosensor has a response time of 30 sec, a linear dynamic range of 0 to 1 ppm, sensitivity of 42.21 µS/ppm, and limit of detection of 0.19 ppm.


[1] M. Pohanka, D. Jun, K. Kuca, Sensors 8 (2008) 5303. [2] M.N.V. Garcia, T. Mortram, Biosyst. Eng. 84 (2003) 1. [3] M. Pohanka, V. Adam, R. Kizek, Sensors 13 (2013) 11498. [4] N. Jaffrezic-Renault, S.V. Dzyadevych, Sensors 8 (2008) 2569. [5] M. Wyer, Metal Ion Promoted Hydrolysis of the Organophosphorus Pesticide, Diazinon, Queen’s University, Ontario, Canada, 2008. [6] B. Eggins, Chemical Sensors and Biosensors, John Wiley & Sons, Chichester, England, 2012, p.444. [7] B.T. Feyssa, Thesis, Faculty of Chemistry, University of Barcelona, Spain, 2010. [8] S.M. Naghib, M. Rabiee, E. Omidinia, P. Khoshkenar, D. Zeini, Int. J. Electrochem. Sci. 7 (2012) 120. [9] G.S. Nunes, G. Jeanty, J.L. Marty, Analytica Chimica Acta 523 (2004) 107. [10] N. Jaffrezic-Renault, Sensors 1 (2001) 60. [11] B. Krajewska, A. Olech, Polym. Gels Netw. 4 (1996) 33. [12] Y.A. Votchitseva, E.N. Efremenko, T.K. Aliev, S.D. Varfolomeyev, Biochemistry (Moscow), 71 (2006) 167. [13] A. Mulchandani, W. Chen, P. Mulchandani, J. Wang, K.R. Rogers, Biosens. Bioelectron. 16 (2001) 225. [14] W. Ningfeng, D. Minjie, S. Xiuyun, L. Guoyi, Y. Bin, F. Yunliu, Chinese Sci. Bull. 49 (2004) 268. [15] D. Rochu, N. Beaufet, F. Renault, N. Viguie, P. Masson, Biochimica et Biophysica Acta 1594 (2002) 207. [16] D.A. Kraut, P.A. Sigala, B. Pybus, C.W. Liu, D. Ringe, G.A. Petsko, D. Herschlag, Plos Biology 4 (2006) 501. [17] J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Education, Harlow, England, 2010, p.296.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.