A plasma precipitator reactor is an essential part of the emission treatment. This device removes fine particles, such as dust, smoke, and various toxic gases, using the force of an induced plasma charge, minimally impeding the flow of gases through the unit. In this study, the plasma precipitator combines dust deposition-capture technology by magnetic force and emission gas removal with plasma. The reactor was successfully fabricated and tested in real-world applications of the textile industry to reduce gas and particulate emissions. Using this reactor, SO2, NO2, CO, and CO2 sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2) gases turned into more environmentally friendly forms, such as O2, with a decrease of approximately 91.3%, 91.4%, 88.3%, and 89.6% w/w, respectively. Meanwhile, the element and molecular forms, which contain sulfur, carbon, and nitrogen, were deposited as particulates in the electrode channels. Using this technology, the number of particulates decreased up to approximately 93.5% w/w. The plasma precipitator reactor does not require high electricity compared to (conventional) scrubbers that use a blower system. The results indicate that plasma precipitators can be used as an advanced technology to replace conventional gas and particulate emission removal systems from the industries.

Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.