Starch was extracted from Kwakil beans and cross-linked with POCl3 (1% v/w of starch dry basis [db]). The cross-linked starch (PCS) derivative was carboxymethylated with sodium monochloroacetate (5% to 30% w/w of starch db) to obtain cross-linked carboxymethyl starch (PCCS) derivatives. The derivatives were used in the adsorption of Pb2+ and Cd2+, and the process was monitored using atomic adsorption spectrometer. Carboxymethylation enhanced adsorption of ions (Cd2+, 95% to 96%; Pb, 65% to 94%), and it was more appreciable with Pb2+ than Cd2+ as degree of substitution increased from 0.008 to 0.052. This was attributed to selective ion exchange, steric and stereochemical effects of the carboxymethyl groups. Derivatives were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Adsorption increased with pH and adsorbent dosage but decreased when temperature and interfering ion (i.e., Na+ and Ca2+) concentrations increased. Adsorption equilibrium was reached in 5 min. Kinetic parameters of Pb2+ fitted the pseudo-second-order model (R2 = 0.9999), while Cd2+ fitted the pseudo-first-order model (R2 = 0.9978). Isotherm parameters of Pb2+ fitted Langmuir model (R2 = 0.9989), while Cd2+ fitted Freundlich model (R2 = 0.9689). These parameters inferred the involvement of different combinations of physisorption and chemisorption mechanisms in the adsorption of Pb2+ and Cd2+. However, the thermodynamic parameters indicated the dominance of the physisorption mechanism in the overall exothermic process (∆H = −15.51 and −9.79 kJ·mol−1 for Pb2+ and Cd2+, respectively). Pb2+ and Cd2+ were recovered (≈100%) in 1 M HNO3, and efficient re-adsorption (>80%) was obtained till third reuse cycle. Product was used to treat wastewater and the heavy metals were efficiently removed.


[1] Güçlü, G., Al, E., Emik, S., İyim, T.B., Özgümüş, S., Özyürek, M. 2010. Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym. Bull. 65(4): 333–346, https://doi.org/10.1007/s00289-009-0217-x.

[2] Wang, T. Song, Y., Li, B., Zhou, X. 2012. Chelating–ultrafiltration treatment of some heavy metal ions in aqueous solutions by crosslinking carboxymethyl modified cornstarch. Water Air Soil Pollut. 223(2): 679–686, https://doi.org/10.1007/ s112 70-011-0893-7.

[3] Shalla, A.H., Yaseen, Z., Bhat, M.A., Rangreez, T., A., Maswal, M. 2018. Recent review for removal of metal ions by hydrogels. Sep. Sci. Technol. 54(1): 1–12, https://doi.org/10.1080/01496395.2018.1503 307.

[4] Xiang, B., Fan, W., Yi, X., Wang, Z., Gao, F., Li, Y., Gu, H. 2016. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance. Carbohydr. Polym. 136: 30–37, https://doi.o rg/10.1016/j.carbpol.2015.08.065.

[5] Ahalya, N., Ramachandra, T., Kanamadi, R. 2003. Biosorption of heavy metals. Res. J. Chem. Environ. 3. 7(4): 71–79.

[6] Madala, S., Nadavala, S. K., Vudagandla, S., Boddu, V.M., Abburi, K. 2017. Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arab. J. Chem. 10: 1883–1893, https://doi.org/ 10.1016/j.arabjc.2013.0 7.017.

[7] Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., Pillay, V. 2017. A review of the chemical modification techniques of starch. Carbohydr. Polym. 157: 1226–1236, https://doi.org/10.1016/j.carbpol.2016.09.094.

[8] Kim, B.S., Lim, S.T. 1999. Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch. Carbohydr. Polym. 39(3): 217–223, https://doi.org/10.1016/S0144-8617(99)00011-9.

[9] Guo, L., Zhang, S.-F., Ju, B.-Z., Yang, J.-Z., Quan, X. 2006. Removal of Pb (II) from aqueous solution by cross-linked starch phosphate carbamate. J. Polym. Res. 13(3): 213–217, https://doi.org/10.10 07/s10965-005-9028-4.

[10] Muñoz-Bonilla, A., Fernández-García, M. 2012. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 37(2): 281–339, https://doi.org/1 0.1016/j.progpolymsci.2011.08.005.

[11] Nishat, N., Malik, A. 2013. Antimicrobial Bioplastics: Synthesis and Characterization of Thermally Stable Starch and Lysine-Based Polymeric Ligand and Its Transition Metals Incorporated Coordination Polymer. ISRN Inorg. Chem. https://doi.org/10.1 155/2013/538157.

[12] Haroon, M., Wang, L., Yu, H., Abbasi, N.M., Saleem, M., Khan, R.U., Ullah, R.S., Chen, Q., Wu, J. 2016. Chemical modification of starch and its application as an adsorbent material. Rsc Adv. 6(82): 78264–78285, https://doi.org/10.1039/C6R A16795K.

[13] Naushad, M., Ahamad, T., Sharma, G., Ala’a, H., Albadarin, A.B., Alam, M.M., ALOthman, Z.A., Alshehri, S.M., Ghfar, A.A. 2016. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem. Eng. J. 300: 306–316, https://doi.org/10.101 6/j.cej.2016.04.084.

[14] Sabaa, M.W., Magid, E.H.A., Mohamed, R.R. 2017. Maize Starch-g-poly (n-vinylimidazole) Synthesis and its application in sewage water treatment. Res. Rev. J. Chem. 6(2): 47–59.

[15] Feng, K., Wen, G. 2017. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate. Int. J. Polym. Sci. 1–9, https://doi.org/10.1155/ 2017/6 470306.

[16] Ashogbon, A.O., Akintayo, E.T. 2014. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch‐Stärke. 66(1–2): 41–57, https://doi.org/10.1 002/star.201300106.

[17] Alcázar-Alay, S.C., Meireles, M.A.A. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. (Campinas). 35(2): 215–236, https://doi.org/10.1590/1678-457X.6749.

[18] Bender, A., Reaidi, G. 1982. Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. J. Plant Foods. 4(1): 15–22, https://doi.org/10.1080/0142968X.1982.11904243.

[19] Kumar, S., Verma, A.K., Das, M., Jain, S., Dwivedi, P.D. 2013. Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption. Nutr. 29(6): 821–827, https://doi.org/10.1016/ j.nut.2012.11.010.

[20] Schoch, T., Maywald, E. 1968. Preparation and Properties of Various Legume Starches, Cereal Chemistry. 45: 564–573.

[21] AOAC. 2000. Official Methods of Analysis. 17th ed. Gaithersburg, MD, USA.: The Association of Official Analytical Chemists.

[22] Warren, F.J., Gidley, M.J., Flanagan, B.M. 2016. Infrared spectroscopy as a tool to characterise starch ordered structure–a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 139: 35–42, https://doi.org/10.1016/j.carbpol.2015.11.066.

[23] Stojanović, Ž., Jeremić, K., Jovanović, S., Lechner, M.D. 2005. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch‐Stärke. 57(2): 79–83, https://doi.org/10.1002/star.200400342.

[24] Ho, Y.S., McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5): 451–465.

[25] Weber, W.J., Morris, J.C. 1963. Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Division. 89(2): 31–60.

[26] Al-Degs, Y.S., El-Barghouthi, M.I., Issa, A.A., Khraisheh, M.A., Walker, G.M. 2006. Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies. Water Res. 40(14): 2645–2658, https://doi.org/10.1016/j.watres.2006.0 5.018.

[27] Adewuyi, A., Pereira, F.V. 2016. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution. J. Adv. Res. 7(6): 947–959, https://dx.doi.org/ 10.1016%2F j.jare.2016.10.001.

[28] Wani, I.A., Sogi, D.S., Wani, A.A., Gill, B.S., Shivhare, U.S. 2010. Physico‐chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. Int. J. Food Sci. Technol. 45(10): 2176–2185, https://doi.org/10.1111/j.1365-2621.20 12.03062.x.

[29] Hoover, R., Sosulski, F. 1986. Effect of Cross‐Linking on Functional Properties of Legume Starches. Starch‐Stärke. 38(5): 149–155, https://doi.org/10.10 02/star.19860380502.

[30] Singh, A.V., Nath, L.K. 2011. Synthesis and evaluation of physicochemical properties of cross‐linked Phaseolus aconitifolius starch. Starch‐Stärke. 63(10): 655–660, https://doi.org/10.1002/star.2011 00034.

[31] Hirsch, J.B., Kokini, J.L. 2002. Understanding the mechanism of cross-linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross-linked waxy maize starches. Cereal Chem. 79(1): 102–107, https://doi.org/10.109 4/CCHEM.2002.79.1.102.

[32] Shah, P.U., Raval, N.P., Vekariya, M., Wadhwani, P.M., Shah, N.K. 2016. Adsorption of lead (II) ions onto novel cassava starch 5-choloromethyl-8-hydroxyquinoline polymer from an aqueous medium. Water Sci. Technol. 74(4): 943–956, https://doi.o rg/10.2166/wst.2016.284.

[33] Singh, V., Singh, S.K. 2015. Cadmium (II) removal from aqueous solution using guar gum-silica nanocomposite. Adv. Mater. Lett. 6(7): 607–615, https://doi.org/10.5185/amlett.2015.5873.

[34] Rendleman, J. 1978. Metal-polysaccharide complexes–part I. Food Chem. 3(1): 47–79, https://doi.org/10.1016/0308-8146(78)90047-X.

[35] Kaptso, K.G., Njintang, Y.N., Nguemtchouin, M.M.G., Scher, J., Hounhouigan, J., Mbofung, C.M. 2015. Physicochemical and micro-structural properties of flours, starch and proteins from two varieties of legumes: Bambara groundnut (Vigna subterranea). J. Food Sci. Technol. 52(8): 4915–4924, https://doi.org/10.1007/s13197-014-1580-7.

[36] Barrios, S.E., Contreras, J.M., López-Carrasquero, F., MÜLLER, A.J. 2012. Chemical modification of cassava starch by carboxymethylation reactions using sodium monochloro acetate as modifying agent. Revista de la Facultad de Ingeniería UCV. 27(2): 97–105.

[37] Basiak, E., Lenart, A., Debeaufort, F. 2018. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polym. 10(4): 412, https://doi.org/10.339 0/polym10040412.

[38] Talari, A.C.S., Martinez, M.A.G., Movasaghi, Z., Rehman, S., Rehman, I.U. 2017. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 52(5): 456–506, https://doi.org/10.1080/05704928.2016.12308 63.

[39] Heo, H., Lee, Y.K., Chang, Y.H. 2017. Effect of cross-linking on physicochemical and in vitro digestibility properties of potato starch. Emirates J. Food Agric. 29(6): 463, https://doi.org/10.9755/ejf a.2017-01-237.

[40] He, Z., Honeycutt, C.W., Xing, B., McDowell, R.W., Pellechia, P.J., Zhang, T. 2007. Solid-state Fourier transform infrared and 31P nuclear magnetic resonance spectral features of phosphate compounds. Soil Sci. 172(7): 501–515.

[41] Reddy, C.K., Luan, F., Xu, B. 2017. Morphology, crystallinity, pasting, thermal and quality characteristics of starches from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth). Int. J. Biol. Macromolecules. 105: 354–362, https://doi.org/10.1016/j.ijbiomac.2017.07.052.

[42] Wojeicchowski, J.P., Siqueira, G.L.d.A.d., Lacerda, L.G., Schnitzler, E., Demiate, I.M. 2018. Physicochemical, structural and thermal properties of oxidized, acetylated and dual-modified common bean (Phaseolus vulgaris L.) starch. Food Sci. Technol. (AHEAD). 38(2): 0–10, https://doi.org/10.1590/16 78-457x.04117.

[43] Kittipongpatana, N., Kittipongpatana, O.S. 2015. Cross-linked carboxymethyl mung bean starch as pharmaceutical gelling agent and emulsion stabilizer. Int. J. Pharm. Pharm. Sci. 7(1): 404–407.

[44] Chen, Q., Zheng, X., Zhou, L., Kang, M. 2019. Chemical Modification of Starch Microcrystals and their Application as an Adsorbent for Metals in Aqueous Solutions. BioResources. 14(1): 302–312.

[45] Ciesielski, W., Lii, C. Y., Yen, M. T., Tomasik, P. 2003. Interactions of starch with salts of metals from the transition groups. Carbohydr. Polym. 51(1): 47–56, https://doi.org/10.1016/S0144-8617(02)00108-X.

[46] Onyango, C. 2016. Starch and modified starch in bread making: A review. Afr. J. Food Sci. 10(12): 344–351, https://doi.org/10.5897/AJFS201 6.1481.

[47] Ünlü, N., Ersoz, M., 2006. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J. Hazardous Mater. 136(2): 272–280, https://doi.org/ 10.1016/j.j hazmat.2005.12.013.

[48] Arshadi, M., Amiri, M., Mousavi, S. 2014. Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash. Water Resour. Ind. 6: 1–17, https://doi.org/10.1016/j.wri.2014.06.001.

[49] Xu, S.M., Feng, S., Peng, G., Wang, J.D., Yushan, A. 2005. Removal of Pb (II) by crosslinked amphoteric starch containing the carboxymethyl group. Carbohydr. Polym. 60(3): 301–305, https://doi.org/ 10.1016/j.carbpol.2005.01.018.

[50] Awokoya, K., Moronkola, B. 2012. Preparation and characterization of succinylated starch as adsorbent for the removal of Pb (II) ions from aqueous media. Int. J. Eng. Sci. 1(11): 18–24.

[51] Heidari, A., Younesi, H., Mehraban, Z., Heikkinen, H. 2013. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 61: 251–263, https://doi.org/10.1016/j.ijbiomac. 2013.0 6.032.

[52] Kumar, P.S., Ramakrishnan, K., Kirupha, S.D., Sivanesan, S. 2010. Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz. J. Chem. Eng. 27(2): 347–355, https://doi.org/10.1590/S0104-663220 100002000 13.

[53] Zdanowicz, M., Spychaj, T., Lendzion-Bieluń, Z. 2014. Crosslinked carboxymethyl starch: One step synthesis and sorption characteristics. Int. J. Biol. Macromol. 71: 87–93, https://doi.org/10.1016/ j.ijbiomac.2014.04.043.

[54] EGASPIN. 2002. Environmental Guidelines and Standards for the Petroleum Industry in Nigeria, Department of Petroleum Resources, Lagos. Nigeria. pp. 415.

[55] Abidin, A., Purnomo, C.W., Cahyono, R.B. 2018. Hydro-char production from press-mud wastes of the sugarcane industry by hydrothermal treatment with natural zeolite addition. AIP Conf. Proc. 2026: 020049-1–020049-8, http://dx.doi.org/ 10.1063/1.5 065009.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.