This study investigated the cracking of used cooking oil using cobalt-impregnated carbon catalysts (Co-carbon) to produce biofuel. Carbon was impregnated with cobalt at concentrations of 1%, 2%, and 3% to produce Co-carbon catalysts. X-ray diffraction and scanning electron microscopy (SEM) demonstrated the amorphous nature of the catalysts. SEM-energy-dispersive X-ray analysis confirmed the successful impregnation of cobalt into carbon at levels of 4.46%, 6.74%, and 0.86% and further revealed that the Co-carbon catalysts contained pores and that each of them was slightly unique. The cracking procedure was conducted at 450 °C, 500 °C, and 550 °C. Analysis of the catalytic cracking products revealed that the highest liquid oil fraction was obtained by catalytic cracking at 500°C using 1% Co-carbon catalyst, which also provided the lowest activation energy (Ea). Catalytic cracking using 3% Co-carbon provided the highest yield of diesel oil (C12–C18) in the product.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.