In this paper, we evaluated the effect of viscoplastic dampers on the response of steel frames under blast loading. We used SAP2000 software and link elements to investigate the responses of nine-story steel frames with and without dampers. The proposed viscoplastic damper is a new type of viscous damper. The application of this damper is based on the availability of its constituent materials. The damper acts as a viscoelastic damper at low levels of vibration, but it acts as a combination of viscoelastic operator and metal-yielding device at extreme levels of vibration. With respect to the height of the structure, the need for the correct distribution is underlined, which is addressed by developing a non-uniform loading at the height of the structure. We used A.T.-Blast software program to measure the required parameters to calculate the pressure coming from the blast. The comparison of the simulation results with and without dampers demonstrated about 33% reduction in responses with respect to the top floor displacements and about 59% reduction in modeling the nine-story steel frame with brass and bending moments at column bases, which represents the optimal operation of viscoplastic damper in steel frame under blast loading. It is demonstrated that using viscoplastic damper with brace improves the blast resistance of structures.

Bahasa Abstract

Penggunaan Peredam Viskoplastis untuk Meningkatkan Ketahanan Rangka Baja pada Pembebanan Letupan. Di dalam naskah ini, kami mengevaluasi pengaruh peredam viskoplastis (plastik kental) terhadap respons rangka baja pada pembebanan letupan. Kami menggunakan perangkat lunak SAP2000 dan elemen-elemen penghubung untuk menyelidiki respons-respons dari rangka baja sembilan lantai dengan dan tanpa peredam. Peredam viskoplastis yang diusulkan merupakan suatu tipe peredam kental baru. Penggunaan peredam ini berdasarkan pada ketersediaan bahan-bahan konstituennya. Peredam bekerja sebagai suatu peredam viskoelastis pada level-level vibrasi rendah, tetapi peredam ini bekerja sebagai suatu kombinasi dari operator viskoelastis dan peranti penghasil logam pada level-level vibrasi yang ekstrim. Sehubungan dengan ketinggian struktur, ditekankan pada kebutuhan akan pendistribusian yang benar, yang ditangani dengan mengembangkan suatu pembebanan yang tidak merata pada ketinggian struktur. Kami menggunakan program perangkat lunak A.T.-Blast untuk mengukur parameter-parameter yang diperlukan untuk menghitung tekanan yang dapat dari letupan. Pembandingan hasil-hasil simulasi dengan dan tanpa peredam menunjukkan sekitar 33% penurunan respons sehubungan dengan perpindahan lantai atas dan sekitar 59% penurunan dalam pemodelan rangka baja sembilan lantai dengan kuningan dan momen pembengkokkan pada alas kolom, yang mewakili pengoperasian optimal peredam viskoplastis pada rangka baja pada pembebanan letup. Di sini ditunjukkan bahwa dengan menggunakan peredam viskoplastis dengan penguat meningkatkan ketahanan letupan struktur.


N.Y.H. Bangash, T. Bangash, Explosion-Resistant Buildings, Springer-Verlag, Berlin Heidelberg, 2006.

H Jamnani, H.G. Abdollahzadeh, H. Faghihmaleki, J. Eng. Sci. Technol. 12 (2017) 1.

H. Faghihmaleki, E.K. Najafi, A.H. Aini, Int. J. Struct. Integrity. 2017.

G. Abdollahzadeh, H. Faghihmaleki. Front. Struct. Civil. Eng. 12 (2018) 425.

J.F. Baker, E. Leader Williams, P. Lax (Ed.), The design of framed buildings against high explosive bombs, The Civil Engineer in War, UK Institution of Civil Engineers, London, 1948.

H.L. Brode, Phys. Fluids. 2 (1959) 217.

H. Lamb, Hydrodynamics, New York, Cambridge University Press, 1997.

G.I. Taylor (Ed.), The Propagation and Decay of Blast Waves, UK Home Office, ARP Dept. RC 39, 1939.

H. Miyamoto, Kit, Taylor and Douglas, Structural control of dynamic blast loading using fluid viscous dampers, SEAOC Convention, 1999.

Charney, A. Finley, Ibrahim, E. Yasser (Ed.), A new visco-plastic passive energy device, in 13th World Conference in Earthquake Engineering 2004, Canada, 2004, p. 118.

Y.E. Ibrahim (Ed.), A new visco-plastic device for seismic protection of structures, Virginia Polytechnic Institute and State University, 2005.

SAP2000, Version 14, Computers and Structures, Inc., Berkeley, CA, 2007.

A. Gupta, H. Krawinkler (Ed.), Seismic demands for performance evaluation of steel moment resisting frame structures, John A. Blume Earthquake Engineering Center, Report No. 132, Department of Civil Engineering, Stanford University, 1999.

Task Committee on Blast Resistant Design of the Petrochemical Committee of the Energy Division of the American Society of Civil Engineers, Design of blast-resistant buildings in petrochemical facilities, 2010.

FEMA453, Design Guidance for Shelters and Safe Rooms, Federal Emergency Management Agency, 2006.

S. George, Karlos, Vasilis (Ed.), Calculation of Blast Loads for Application to Structural Components, European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen Contact, 2013.

U.S. Department of the Army Technical Manual, TM5-1300 Structures to resist the effects of accidental explosions, United States Department of the Army, Navy and Air Force, 2008.

H. Faghihmaleki, Makara J. Technol. 21 (2017) 7.

G. Abdollahzadeh, H. Faghihmaleki, M. Zarifmanesh, J. Structural Integrity and Maintenance 4 (2019) 230.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.