The purpose of this research is to investigate the corrosion rate of carbon steel as flowline and pipeline in natural gas production with CO2 content. The influence of variety of conditions that represent the actual conditions in practice such as CO2 partial pressure and solution composition, particularly NaCl percentage were performed. Research conducted by polarization test and simulation methods using PREDICTTM software. The result of this research is used to illustrate the level of corrosion rate of typical carbon steel i.e. API 5L X-52 occurred in natural gas pipelines due to the effect of dissolved CO2. From the experiments obtained that corrosion rate of steel in environments containing CO2 ranged between 15-28 mpy. This high corrosion rate observed could severely damage natural gas transmission flowline and pipeline. The result of this research is the first step, as an input for prevention efforts, to prevent leakage of flowline and pipeline due to corrosion of CO2 which appropriate with the lifetime that has been designed.

Bahasa Abstract

Laju Korosi Baja Karbon untuk Pipa Hulu dan Hilir sebagai Penyalur Produksi Gas Alam yang Mengandung Gas CO2. Penelitian yang dilakukan bertujuan untuk mengkaji besaran laju korosi baja karbon yang digunakan sebagai pipa penyalur bagian hulu mapun hilir pada produksi gas alam yang mengandung CO2. Beberapa parameter yang mewakili kondisi aktual di dalam praktek seperti tekanan parsial CO2 beserta komposisi larutan, khususnya kadar NaCl ditunjukkan pengaruhnya. Pengujian dilakukan dengan metoda polarisasi dan simulasi dengan menggunakan perangkat lunak PREDICTTM. Hasil penelitian menggambarkan laju korosi baja karbon yang biasa digunakan sebagai pipa penyalur gas alam yaitu jenis API 5L X-52 sebagai pengaruh dari gas CO2 yang terlarut. Berdasarkan hasil pengujian, diperoleh besaran laju korosi baja di dalam lingkungan yang mengandung CO2 tersebut berkisar antara 15-28 mils per tahun (mpy). Laju korosi baja yang diperoleh ini merupakan nilai yang relatif tinggi sehingga dapat menimbulkan kerusakan yang signifikan terhadap pipa penyalur gas pada bagian hulu maupun hilir. Hasil penelitian merupakan langkah awal terhadap upaya pencegahan terjadinya kebocoran pada pipa penyalur akibat korosi oleh gas CO2 agar umur pakai yang telah dirancang dapat dicapai.


M.H. Nazari, S.R Allahkaram, M.B. Kermani, Mater. Des. 31 (2010) 3559.

L.M. Smith, M.B. Kermani (Ed.), CO2 Corrosion Control in Oil and Gas Production, vol. 23, The Institute of Materials, Maney Materials Science Publishing, London, 1997, p.53.

M.B. Kermani, J.C. Gonzales, G.L. Turconi, T. Perez, C. Morales, Material Optimization in Hydrocarbon Production, NACE, 2005, p.2.

Corrosion/2005, Paper No. 05111, NACE International, 2005.

Anon., Seawater Corrosion Handbook. Noyes Data Corporation, Park Ride, New Jersey, USA, 1979, p.374.

P.A. Yuli, C.I. Mokhtar, Application of Response Surface Design to Characterize CO2 Corrosion Mechanistically, Petromin Pipeliner, 2010, p.48.

J.W. Soedarsono, A. Rustandi, S. Husein, Study of Fluid Velocity Effect on UNS G10180 Steel in 3.5% NaCl Using Rotating Cylinder Electrode, Department of Metallurgy and Materials, Faculty of Engineering, Universitas Indonesia, 2010, p.54.

S. Nesic, B.F.M. Pot, J. Postlethwaite, N. Thevenot, Superposition of Diffusion and Chemical Reaction

Controlled Limiting Currents–Application to CO2 Corrosion, JCSE 1/3 (1995) 1.

Denny A Jones, Principles and Prevention of Corrosion, Maxwell Macmillan, Singapore, 1992, p.364.

H.H. Uhlig, R.W. Revie, Corrosion and Corrosion Control, 3rd edition, John Wiley & Sons, 1985, p.131.

G.W. Ashley, G.T. Burstein, Initial Stages of the Anodic Oxidation of Iron in Chloride Solutions, Corrosion 47/12 (1991) 912.

H. Jiabin, J.C. William, Z. Jinsou, Effect of Sodium Chloride on Corrosion of Mild Steel in CO2-Saturated Brines, J Appl. Elect. 41/6 (2011) 741.

H. Fang, S. Nesic, B.N. Brown, NACE Corrosion/2006, Paper No. 06372, NACE International, Houston, 2006.

H. Fang, B.N. Brown, S. Nesic, NACE Corrosion/2010, Paper No. 10276, NACE International, 2010.

S. Nesic, J. Postlethwaite, S. Olsen, An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solution, Paper No. 67, NACE International, 1996.

N. Sridhar, D.S. Dunn, A.M. Anderko, M.M. Lencka, H.U. Schutt, Corrosion/2001, Paper No. 45, NACE International, 2001.

H. Fang, Master Thesis, Low Temperature and High Salt Concentration Effects on General CO2 Corrosion for Carbon Steel, The Russ College of Engineering and Technology of Ohio University, Ohio, USA, 2006.

M.B. Kermani, A. Morshed, NACE Corrosion/2003, Paper No. 131, NACE International, 2003.

A. Daugstad, Mechanism of Protective Film Formation During CO2 Corrosion Carbon Steel, Corrosion/98, Paper No. 31, NACE International, 1998.

A. Daugstad, H. Hammer , M. Seirstein, Effect of Steel Microstructure upon Corrosion Rate and

Protective Iron Carbonate Film Formation, Corrosion/2000, Paper No. 23, NACE International, 2000.

Cited By




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.