Modeling of Coupled-Tank System Using Fuzzy Takagi-Sugeno Model. This paper describes modeling of coupledtank system based on data measurement using fuzzy Takagi-Sugeno model. The fuzzy clustering method of Gustafson- Kessel algorithm is used to classify input-output data into several clusters based on distance similarity of a member of input-output data from center of cluster. The formed clusters are projected orthonormally into each linguistic variables of premise part to determine membership function of fuzzy Takagi-Sugeno model. By estimating data in each cluster, the consequent parameters of fuzzy Takagi-Sugeno model are calculated using weighted least-squares method. The resulted fuzzy Takagi-Sugeno model is validated by using model performance parameters variance-accounted-for (VAF) and root mean square (RMS) as performance indicators. The simulation results show that the fuzzy Takagi-Sugeno model is able to mimic nonlinear characteristic of coupled-tank system with good value of model performance indicators.

Bahasa Abstract

Makalah ini membahas pemodelan sistem tangki terhubung berbasiskan data masukan-keluaran dengan menggunakan model fuzzy Takagi-Sugeno. Algoritma fuzzy clustering Gustafson-Kessel digunakan untuk mengelompokkan data masukan-keluaran menjadi beberapa cluster berdasarkan kesamaan jarak suatu anggota data masukan-keluaran dari titik tengah suatu cluster. Cluster-cluster yang terbentuk diproyeksikan orthonormal ke setiap ruang variabel linguistik bagian premis untuk mendapatkan fungsi keanggotaan model fuzzy Takagi-Sugeno. Parameter konsekuen dari model fuzzy Takagi-Sugeno diperoleh dengan mengestimasi data setiap cluster dengan menggunakan metode weighted leastsquares. Hasil model fuzzy Takagi-Sugeno yang diperoleh divalidasi dengan indikator kinerja variance-accounted-for (VAF) dan root mean square (RMS). Hasil uji simulasi menunjukkan model fuzzy Takagi-Sugeno sanggup meniru karakteristik nonlinier sistem tangki terhubung dengan nilai indikator kinerja model yang baik.


R. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publisher, Boston, 1998.

M. Sugeno, T. Yasukawa, IEEE Trans. on Fuzzy Systems 1 (1993) 7.

R. Babuska, H. Verbruggen, Proceeding European Control Conference, Rome, Italy, 1995, p. 1207.

K.J. Astrom, B. Wittenmark, Adaptive Control, Addison-Wesley, New York, 1989.

K. Narendra, J. Balakrishnan, M. Ciliz, IEEE Trans. on Control Systems, 15 (1995) 37.

L. Ljung, System Identification: Theory for the User, Prentice Hall, New Jersey, 1987.

D. Gustafson, W. Kessel, Proceeding IEEE CDC, San Diego, USA, 1979, p. 761.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.