•  
  •  
 
Jurnal Kebijakan Ekonomi

Abstract

The aims of this study was to examine the impact of implementation of the Large-Scale Social Restriction or PSBB policy on the concentration of particulate matter 2.5 (PM2.5). The observation period lasted from September 1, 2019 to December 31, 2020 in five major cities in Indonesia, namely Jakarta, Bandung, Yogyakarta, Semarang, and Surabaya. The data was processed using the fixed effect least square dummy variable (LSDV) model to test the impact of the PSBB policy or restrictions on citizen mobility to reduce the spread of COVID-19 on PM2.5 concentrations.

As a result, the PSBB policy had a very significant impact on the decline in PM2.5 to 1,210 μg/m3. When testing the impact of PSBB per level, of the 4 PSBB levels, PSBB level 3 significantly reduces PM2.5 concentrations. While PSBB level 1, PSBB level 2 and PSBB level 4 can have an impact on decreasing PM2.5 concentrations, but not significantly.

We hope this research can contribute to policy makers as a consideration when making decisions related to air quality control in Indonesia. Further research can be done by looking at the variable number of vehicles, the firmness of the apparatus in imple menting the PSBB.

Keyword: Air pollution, COVID-19, PM2.5, PSBB

Bahasa Abstract

Tujuan penelitian ini adalah untuk meneliti pengaruh polusi udara terhadap peningkatan kasus COVID-19 di Indonesia. Ada tiga polutan yang diuji dalam penelitian ini, yaitu: Particulate Matter 10 (PM10), Nitrogen Dioksida (NO2) dan Sulfur Dioksida (SO2). Periode pengamatan berlangsung selama 1 Maret 2020 sampai Desember 2020 di lima kota besar di Indonesia, yakni: Jakarta, Bandung, Yogyakarta, Semarang dan Surabaya. Di mana dalam periode tersebut ada masa penerapan Pembatasan Sosial Berskala Besar (PSBB) atau sejenisnya.

Penelitian ini menggunakan metode regresi data panel. Metode regresi panel data dipilih dengan harapan bisa mendapatkan hasil estimasi yang lebih presisi karena menggabungkan beberapa data periode waktu dan data individu. Tak heran jika saat ini kian banyak yang menggunakan metode regresi panel data untuk menganalisa sebuah kebijakan.

Dalam penelitian ini tahapan pengolahan data dimulai dengan membuat ringkasan diskriptif statistik. Selanjutnya dilakukan pemilihan model regresi dengan menggunakan metode Common Effect (CE), Fixed Effect (FE) dan Random Effect (RE). Setelah terpilih model regresi, dilanjutkan uji diagnostik, yang meliputi: uji multikoleniaritas, uji asumsi autokorelasi, uji heterokedastisitas, dan uji normalitas. Model regresi yang digunakan terjadi masalah autokorelasi, heteroskedastisitas dan normalitas. Sehingga kemudian digunakan metode Robust Standard Errors dalam regresi.

Hasil regresi dengan penerapan Robust Standard Errors menunjukkan bahwa PM10, SO2 dan NO2 memiliki pengaruh yang signifikan terhadap peningkatan kasus COVID-19 di lima kota di Indonesia; Jakarta, Bandung, Yogyakarta, Semarang dan Surabaya. Sementara untuk daerah lain masih perlu dilakukan kajian lebih mendalam lagi.

Kata Kunci: Air pollution, COVID-19, PM2.5, PSBB

References

Athanasios Valavanidis, Konstantinos Fiotakis,and Thomais Vlachogianni (2008). Airborne Particulate Matterand Human Health:Toxicological Assessmentand Importance of Sizeand Composition of Particlesfor Oxidative Damage and Carcinogenic Mechanisms. DOI:10.1080/10590500802494538

Badi H. Baltagi, (2015). Econometric Analysis of Panel Data Third edition.

Banu Wicaksono, Ana Uluwiyah (2020). Lesson Learned From Pandemic COVID-19 In Some Macroeconomics Performances Perspectives.

Barbier, E.B., 2020. Is green rural transformation possible in developing countries? World Dev. 131, 104955. https://doi.org/10.1016/j.worlddev.2020.104955.

Barbier, E.B., Burgess, J.C., 2019. Sustainable development goal indicators: analyzing trade-offs and complementarities. World Dev. 122, 295305.

Bin Zhao, Haotian Zheng, Shuxiao Wang, Kirk R. Smith, Xi Lu, Kristin Aunan, Yu Gu, 2015. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015, (2015). https://doi.org/10.1073/pnas.1812955115

Bong Mann Kim, Jeong Su Park, Sang-Woo Kim, H.J. Kim (2015). Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. DOI:10.1016/j.atmosenv.2015.10.082

Casey D. Bray , Alberth Nahas, William H. Battye, Viney P. Aneja (2020). Impact of lockdown during the COVID-19 outbreak on multi-scaleair quality

Claudia L. Persico and Kathryn R. Johnson (2021) The effects of increased pollution on COVID-19 cases and deaths. doi: 10.1016/j.jeem.2021.102431

Daniel Hoechle (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Journal Stata.

Daniele Contini and Francesca Costabile, (2020). Does Air Pollution Influence COVID-19 Outbreaks? https://doi.org/10.3390/atmos11040377

Dongyang Nie et al (2020). Changes of air quality and its associated health and economic burden in 31 provincial capital cities in China during COVID-19 pandemic. https://doi.org/10.1016/j.atmosres.2020.105328

Feng Liu, Meichang Wang, Meina Zheng (2020). Effects of COVID-19 lockdown on global air quality and health. https://doi.org/10.1016/j.scitotenv.2020.142533

Ferdian Fadly (2020). The Effects of Human Mobility Restriction During Covid-19 Pandemic on Indonesia’s Economy. Kajian Ekonomi Keuangan Volume 4 Nomor 3 (2020) http://dx.doi.org/10.31685/kek.V4.3.678

Gautam S (2020). The influence of COVID – 19 on air quality in India: a boon or inutile. Bull Environ Conta Toxicol. 10.1007/s00128-020-02877-y

Hanien Firmansyah, Azmi Nur Fadlillah, Aditya Sukma Pawitra (2020). Articulate Matter as Driven Factor Covid19 Transmission at Outdoor:Review. http://dx.doi.org/10.20473/jkl.v12i3.2020.225-234

He Li, Xiao-Long Xu, Da-Wei Dai, Zhen-Yu Huang, Zhuang Ma, Yan-Jun Guan (2020). Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. DOI: 10.1016/j.ijid.2020.05.076

Jonathan O. Anderson, Josef G. Thundiyil & Andrew Stolbach (2011). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. https://doi.org/10.1007/s13181-011-0203-1

Landguth E., Holden Z., Graham J., Stark B., Mokhtari E., Kaleczyc E (2020). The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain west region of the USA. Environ Int. 2020;139:105668

Lee BJ, Kim B, Lee K, (2014). Air pollution exposure and cardiovascular disease. DOI: 10.5487/tr.2014.30.2.071

Leonardo Setti, Fabrizio Passarini, Gianluigi De Gennaro, Pierluigi Barbieri, Maria Grazia Perrone, Andrea Piazzalunga, Massimo Borelli, Jolanda Palmisani, Alessia Di Gilio,

Prisco Piscitelli, Alessandro Miani, (2020). The Potential role of Particulate Matter in the Spreading of COVID-19 in Northern Italy: First Evidence-based Research Hypotheses. doi: https://doi.org/10.1101/2020.04.11.20061713

Maria A.ZoranRoxana S.SavastruDan M.SavastruMarina N.Tautan, (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. https://doi.org/10.1016/j.scitotenv.2020.139825

Nathaniel Beck and Jonathan N. KatzReviewed (1995). What to do (and not to do) with Time-Series Cross-Section Data

Peters, G.P., Andrew, R.M., Canadell, J.G., Friedlingstein, P., Jackson, R.B., Korsbakken, J.I., et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10, 210. https://doi.org/10.1016/j.atmosres.2020.105328.

Piazzalunga-Expert A. 2020. Evaluation of the Potential Relationship between Particulate Matter (PM) Pollution and COVID-19 Infection Spread in Italy. https://www.ptpz.pl/wp-content/uploads/2020/04/COVID_19_position-paper_ENG1.pdf

Ran Xu, PhD, Hazhir Rahmandad, PhD, Marichi Gupta, Catherine DiGennaro, Navid Ghaffarzadegan, PhD, Heresh Amini, PhD, Mohammad S. Jalali, PhD, (2021). The Modest Impact of Weather and Air Pollution on COVID-19 Transmission. DOI:10.2139/ssrn.3593879

Rini Mariana Sibarani, Halda Aditya Belgaman1, Ibnu Athoillah1, Samba Wirahma.,2020. Analisis Hubungan Parameter Cuaca Terhadap Konsentrasi Polutan (PM2.5 dan CO) di Wilayah Jakarta Selama Periode Work From Home (WFH) Maret 2020. Jurnal Sains & Teknologi Modifikasi Cuaca, vol.22 No.2, 2021: 85-94

Rui Bao, Acheng Zhang (2020). Does lockdown reduce air pollution? Evidence from 44 cities in northern China. https://doi.org/10.1016/j.scitotenv.2020.139052

Suranjana Banerji & Deblina Mitra (2021). Assessment of air quality in Kolkata before and after COVID-19 Lockdown. DOI:10.1080/10106049.2021.1936209

Timothy J. Vogelsang, (2012). Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects. doi:10.1016/j.jeconom.2011.10.001

Wen Ming, Zhengqing Zhou , Hongshan Ai , Huimin Bi & Yuan Zhong (2020). COVID-19 and Air Quality: Evidence from China, Emerging Markets Finance and Trade, 56:10,2422-2442, DOI: 10.1080/1540496X.2020.1790353

Yan Cui, Zuo-Feng Zhang, John Froines, Jinkou Zhao, Hua Wang, Shun-Zhang Yu & Roger Detels (2003). Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study. https://doi.org/10.1186/1476-069X-2-15\

Yang Xie, Hancheng Dai, Yanxu Zhang, Yazhen Wu, Tatsuya Hanaoka, Toshihiko Masui (2019). Comparison of health and economic impacts of PM2.5 and ozone pollution in China. https://doi.org/10.1016/j.envint.2019.05.075

Yichen Wang et al (2021). Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: Perspective on air pollution. https://doi.org/10.1016/j.envpol.2021.118544

Share

COinS