•  
  •  
 

Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments)

Abstract

The Javan banteng (Bos javanicus) persists on Java mainly in a small number of protected-area strongholds, making robust climatic niche characterization important for conservation planning and for evaluating potential management or restoration targets. Here, we modeled banteng climatic suitability in southwestern Java using a MaxEnt (maxnet) framework calibrated with bioclimatic predictors from CHELSA and benchmark occurrence records from extant populations in Ujung Kulon National Park (UKNP) and Alas Purwo National Park (APNP). To contextualize transferability to non-occupied protected habitat, we also projected suitability to Cagar Alam Pananjung Pangandaran (CAPP) and quantified environmental novelty using the Multivariate Environmental Similarity Surface (MESS). Univariate comparisons indicated that all eight bioclimatic variables differed significantly among UKNP, APNP, and CAPP, supporting strong site-level climatic differentiation. Tuned MaxEnt models showed good discrimination under cross-validation, and projections revealed pronounced contrasts among sites: mean suitability was low in UKNP (≈0.13), high in APNP (≈0.80), and intermediate in CAPP (≈0.48). MESS values indicated that UKNP and APNP projections largely remained within the training climatic envelope, whereas CAPP exhibited localized environmental novelty (negative MESS), implying higher extrapolation risk and greater uncertainty in inference. Overall, our results suggest that APNP currently aligns most closely with the modeled climatic niche, while CAPP may contain partially suitable conditions but requires cautious interpretation and additional ecological validation (e.g., habitat structure, disturbance, and prey–human interactions) before being considered in conservation decision-making.

References

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. doi:10.1111/ecog.01132

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. doi:10.1111/j.2041-210X.2011.00172.x

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. doi:10.1016/j.ecolmodel.2011.02.011

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10–15. doi:10.1016/j.ecoinf.2013.11.002

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. doi:10.1111/j.1466-8238.2011.00698.x

Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., & Karger, D. N. (2022). CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometre-resolution. EnviDat. doi:10.16904/envidat.332

Chaiyarat, R., Youngpoy, N., Kongsurakan, P., Angkawanith, C., & Saengpong, S. (2019). Habitat preferences of reintroduced banteng (Bos javanicus) into the Salakphra Wildlife Sanctuary, Thailand. Wildlife Research, 46(6), 537–548. doi:10.1071/WR18184

Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., & Ram, K. (2023). rgbif: Interface to the Global Biodiversity Information Facility API (R package, version 3.7.7). CRAN.

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., et al. (2017). ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. doi:10.1111/ecog.02671

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. doi:10.1111/j.1600-0587.2012.07348.x

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342. doi:10.1111/j.2041-210X.2010.00036.x

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. doi:10.1111/j.1472-4642.2010.00725.x

GBIF.org. (2023). GBIF Home Page (accessed 15 November 2023).

GDAL/OGR contributors. (2023). GDAL/OGR Geospatial Data Abstraction software library. Open Source Geospatial Foundation.

Hakim, L., Guntoro, D. A., Waluyo, J., Megantara, E. N., & Pudyatmoko, S. (2015). Recent status of banteng (Bos javanicus) conservation in East Java and its perspectives on ecotourism planning. Journal of Tropical Life Science, 5(3), 174–180. doi:10.11594/JTLS.05.03.08

Handayani, H., Solihin, D. D., Alikodra, H. S., & Dahlan, Z. (2023). Modeling the habitat suitability of Javan banteng (Bos javanicus javanicus) using geographic information system in Ujung Kulon National Park. Bioeduscience, 7(3), 371–381. doi:10.22236/jbes/11547

Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography, 42(10), 1648–1657. doi:10.1111/ecog.04617

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. doi:10.1002/joc.1276

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2023). dismo: Species distribution modeling (R package, version 1.3-9). CRAN.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142–152. doi:10.1016/j.ecolmodel.2006.05.017

Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. doi:10.1111/j.1466-8238.2011.00683.x

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., et al. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. doi:10.1038/sdata.2017.122

Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., & Jetz, W. (2021). Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Scientific Data, 8, 307. doi:10.1038/s41597-021-01084-6

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., et al. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. doi:10.1111/2041-210X.13628

Lim, H. Y., Gardner, P. C., Abram, N. K., Chung, A. Y. C., Azhar, B., Clements, G. R., et al. (2021). Identifying habitat and understanding movement resistance for the Endangered Bornean banteng Bos javanicus lowi in Sabah, Malaysia. Oryx, 55(1), 148–157. doi:10.1017/S0030605318001126

Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. doi:10.1111/jbi.12058

Maldonado, C., Molina, C. I., Zizka, A., Persson, C., Schneider, C. M., Antonelli, A., & Bacon, C. D. (2015). Estimating species diversity and distribution in the era of Big Data: To what extent can we trust public databases? Global Ecology and Biogeography, 24(8), 973–984. doi:10.1111/geb.12326

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. doi:10.1111/j.1600-0587.2013.00205.x

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. doi:10.1016/j.ecolmodel.2005.03.026

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Radosavljevic, A., & Anderson, R. P. (2014). Making better MaxEnt models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. doi:10.1111/jbi.12227

Rahman, D. A. (2020). Ecological niche and potential distribution of the endangered Bos javanicus in south-western Java, Indonesia. THERYA, 11(1), 57–68. doi:10.12933/therya-20-840

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., et al. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. doi:10.1111/ecog.02881

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. doi:10.1126/science.3287615

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. doi:10.1111/j.1558-5646.2008.00482.x

Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342. doi:10.1890/10-1171.1

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., et al. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. doi:10.1111/2041-210X.13152

Share

COinS