Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments)
Abstract
This study aims to determine seawater intrusion (SWI) based on sample sizes' contribution to land cover characteristics' accuracy using inverse distance weighting (IDW) and Kriging. The SWI is explained based on the extracted salt concentration from the dissolved soil. Here, this study used 24 samples of salt concentration, namely salinity samples collected by systematic random sampling and divided into two groups: ground control points (GCP) and independent checkpoints (ICP). Two interpolation methods, namely IDW and Kriging, are used to make a spatial prediction of the SWI, and their results are evaluated based on their accuracy by observing the root mean square error (RMSE). Based on the results of the best interpolation method using various sample size scenarios considering the knowledge to consider sufficient samples for SWI estimation, namely, the Kriging method produces the lowest RMSE value of 0.011 in model 1 and the highest RMSE value of 0.025 in model 3. The kriging method does not work well if the sample number is small. Compared to IDW, which has the highest RMSE value of 0.028 in model 3 and the lowest RMSE value of 0.13, respectively, in model 1. At the same time, the IDW method can work well even though the sample size is small. However, both interpolation methods are suitable for detecting seawater intrusion in Way Urang Village. In this study also, land cover affects the dynamics of salt concentration so that open land may have a higher salinity value than shrubs and vegetation with low salinity values causing the soil in Way Urang Village not to be polluted by seawater intrusion because the salinity concentration does not exceed the limit.
Bahasa Abstract
Penelitian ini bertujuan untuk menentukan intrusi air laut (SWI) berdasarkan kontribusi ukuran sampel terhadap akurasi karakteristik tutupan lahan menggunakan inverse distance weighting (IDW) dan kriging. SWI dijelaskan berdasarkan konsentrasi garam yang diekstraksi dari tanah terlarut. Disini, penelitian ini menggunakan 24 sampel konsentrasi garam yaitu sampel salinitas yang dikumpulkan dengan sistematik random sampling dan dibagi menjadi dua kelompok yaitu ground control point (GCP) dan independent check point (ICP). Dua metode interpolasiya yaitu IDW dan kriging digunakan untuk membuat prediksi spasial SWI dan hasilnya dievaluasi berdasarkan akurasinya dengan mengamati root mean square error (RMSE). Berdasarkan hasil metode interpolasi terbaik dengan menggunakan berbagai skenario ukuran sampel mengingat pengetahuan untuk mempertimbangkan sampel yang cukup untuk estimasi SWI yaitu metode kriging menghasilkan nilai RMSE terendah sebesar 0,011 pada model 1 dan nilai RMSE tertinggi sebesar 0,025 pada model 3 .Metode kriging tidak bekerja dengan baik jika jumlah sampel sedikit. Dibandingkan dengan IDW yang memiliki nilai RMSE tertinggi yaitu 0,028 pada model 3 dan nilai RMSE terendah masing-masing sebesar 0,13 pada model 1. Sedangkan metode IDW dapat bekerja dengan baik meskipun ukuran sampelnya kecil. Namun kedua metode interpolasi tersebut cocok untuk mendeteksi intrusi air laut di Kelurahan Way Urang. Dalam penelitian ini juga tutupan lahan mempengaruhi dinamika konsentrasi garam sehingga lahan terbuka dapat memiliki nilai salinitas yang lebih tinggi daripada semak dan vegetasi dengan nilai salinitas rendah menyebabkan tanah di Kelurahan Way Urang tidak tercemar oleh intrusi air laut karena konsentrasi salinitas tidak tidak melebihi batas.
References
Al-Khakani, E. T., & Yousif, S. R. (2019). An Assessment of Soil Salinity and Vegetation Cover Changes For A Part of An-Najaf Governorate Using Remote Sensing Data An Assessment Of Soil Salinity And Vegetation Cover Changes for A Part Of An-Najaf Governorate Using Remote Sensing Data. https://doi.org/10.1088/1742-6596/1234/1/012023
Aslam, K., Rashid, S., Saleem, R., & Aslam, RMS. (2015). Use of Geospatial Technology for Assessment of Waterlogging & Salinity Conditions in The Nara Canal Command Area in 10 Sindh, Pakistan. Journal of Geographic Information Systems, 07(04), 438–447. https://doi.org/10.4236/Jgis.2015.74035.
Aswant, I. AL. (2016). Comparative Analysis of Interpolation Methods for Mapping Water Ph in Drilling Wells in Aceh Besar District Based On GIS. UPT Syiah Kuala University Library, 1–76.
Azapurua, M., and K. D. Ramos. (2010). A Comparison of Spatial Interpolation Methods for Estimation of Average Electromagnetic Field Magnitude.
Bleam, W. F. (2016). Soil and Environmental Chemistry. Academic Press.
BPS. (2020). Kalianda District in Figures 2019. Central Bureau of Statistics Kalianda.
Brbulescu, A. and Dumitriu, C. (2020). Soil Salinity Mapping by Different Interpolation Methods in Mirzaabad District , Syrdarya Province.
Burt,R. (2011). Soil Survey Investigations Report, No. 45, Version 2.0. Natural Resources Conservation Service.
Cahyadi, A., Marfai, M.., Tivianto, T. , Wulandari, & Hidayat, W. (2013). Spatial Distribution Analysis of Groundwater Salinity on Pramuka Island, Thousand Islands, DKI Jakarta. in Proceeding National Seminar on Utilization of Geospatial Information for Optimizing Regional Autonomy 2013. (Pp. 19–21).
Chaidir, W. (2012). SCHMIDT-FERGUSON Classification Climate Distribution Analysis Using Geographic Information Systems in Banteng Regency, South Sulawesi.
Daliakopoulos, I.. (2016). The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 573, 727–739
Fitri, S. N. A. (2016). The Relationship Between Salinity Measurement To Gambir River Pure Water Quality, Semarang-Central Java Using Hand Ref. Conference Proceedings, 2012, 1–13.
Hajji, S., Allouche, N., Bouri, S., & Aljuaid, A. M. (2022). Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model.
Kusmiyati, F. and Karno, K. (2014). The Effect of Improving Saline Soil on The Physiological Characteristics of Calopogonium Mucunoides.
L., Nizhamul, Dl, Ofik, P., Purwadi, T., Novi, P., and Sari, K. (2016). Optimization of Distribution Network The Drinking Water Supply System (Spam) Optimization of Distribution Network The Drinking Water Supply System in, 16(2), 3–4.
Latifiani, D., Widyawati, A., Abdimas, J., (2011). Increasing Legal Awareness Regarding Groundwater Pollution Due To Seawater Intrusion in Kel Dadapsari Village, Semarang City.
Largueche, F.Z.B. (2006). Estimating Soil Contamination with Kriging Interpolation Method. American Journal of Applied Sciences: Vol. 3, No. 6. Hal:1894-1898.
Li, J., & Heap, AD. (2008) . A Review of Spatial Interpolation Methods for Environmental Scientists, Canbera: Geoscience Australia.
Nguyen, KA, Liou, YA, Tran, HP, Hoang, PP, And Nguyen, TH. (2020). Soil Salinity Assessment by Using Near-Infrared Channel and Vegetation Soil Salinity Index Derived from Landsat 8 OLI Data: A Case Study In The Tra Vinh Province, Mekong Delta, Vietnam. Progress In Earth And Planetary Science, 7(1), 1–16.
Pasaribu, J.M. and Haryani, N.S. 2012. Comparison of DEM SRTM Interpolation Techniques Using Inverse Distance Weighted (IDW), Natural Neighbor and Spline Methods. Journal of Remote Sensing, 9(2), 126–139.
PDAM Tirta Jasa. Profile Book Of PDAM Tirta Jasa. (2020). South Lampung: Kalianda, December 2020.
Pannell, D. J. & Ewing, M. A. (2006). Managing Secondary Dry Land Salinity: Options and Challenges. Agric. Water Manag. 80, 41–56
Radityo, D., Christin, H., Hamdani, A., Huseina, A., Dwi, A., Denhi, A., & Andi, R. (2020). Identification of The Existence of Seawater Intrusion in Residential Areas Around The Coastal Area of Sukajaya Lempasing Village, Teluk Pandan District. 4(December), 110–115.
Runyan, C. W., & Odorico, P. D. (2010). Ecohydrological Feedbacks Between Salt Accumulation and Vegetation Dynamics : Role of Vegetation‐Groundwater Interactions. 46, 1–11. Https://Doi.Org/10.1029/2010WR009464
Sahana, M. I., Santoso, R., & Waspodo, B. (2020). Mapping of Seawater Intrusion Into Coastal Aquifer : A Case Study of Pekalongan Coastal Area in Central Java. 6(May), 183–192. Https://Doi.Org/10.22146/Jcef.53736
Sejati, S, P. (2019). Comparison of Accuracy of Idw and Kriging Methods in Groundwater Level Mapping. Geography of Indonesia, 33(2), 49–57.
Setiawan, AK, & Rahayu, S. (2018). The Study of Land Use Changes and Its Conformity With The Regional Spatial Plan (RTRW) of Rejang Lebong Regency Based on Geographic Information Systems and Remote Sensing. PWK (City Area Planning) Engineering, 7(3).
Zaman, M., Shahid, S. A. & Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques.
Recommended Citation
Suastini, Ni Made Mega Melliana; Ghazali, Mochammad Firman; Dermawan, Ananda; Salsabila, Choirunnisa; Zahra, Lauditta; and Aulia, Mila
(2023)
"COMPARISON RESULT FOR THE PREDICTION ACCURACY OF SEAWATER INTRUSION BASED ON DIFFERENT SAMPLE SIZES AND LAND COVER CHARACTERISTICS USING INVERSE DISTANCE WEIGHTING AND KRIGING,"
Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments): Vol. 7:
No.
1, Article 3.
DOI: 10.7454/jglitrop.v7i1.141
Available at:
https://scholarhub.ui.ac.id/jglitrop/vol7/iss1/3
Included in
Geographic Information Sciences Commons, Physical and Environmental Geography Commons, Remote Sensing Commons, Spatial Science Commons