Indonesian Journal of Medical Chemistry and Bioinformatics


The Sodium-Glucose co-transporter-2 (SGLT2) inhibitor represents a novel agent for the treatment of type 2 diabetes. Drugs of this class function by inhibiting glucose reabsorption in the kidneys, thereby controlling blood glucose levels. It is known that SGLT2 inhibitors activate the AMPK signaling pathway by increasing the expression and activity of AMP-activated protein kinase (AMPK). In vivo tests have demonstrated that ethanolic and aqueous extracts of Welsh onion leaves (Allium fistulosum L) can reduce body weight, liver weight, adipocyte size, and enhance AMP-activated protein kinase (AMPK) expression. In this study, the inhibitory activity (IC50) of compounds within Allium fistulosum against SGLT2 was predicted using the Support Vector Regression (SVR) predictive model and the SkelSpheres descriptor. The results of the predicted IC50 measurements for compounds present in the 70% ethanol extract of Allium fistulosum in silico indicate that 4 tyramine derivatives and 1 decursidate compound exhibit Excellent or Potent inhibitor activity criteria (IC50 < 1 µM). Among these, the four tyramine group compounds are the isomers N-trans-feruloyltyramine and N-cis-feruloyltyramine, as well as the isomers N-trans-feruloyl-3'-methoxytyramine and N-cis-feruloyl-3'-methoxytyramine. The findings of this study suggest that the ability of Allium fistulosum to enhance AMPK expression is possibly achieved through the inhibition of SGLT2.

Bahasa Abstract

Inhibitor SGLT2 (Natrium-Glukosa co-transporter-2) mewakili agen baru dalam pengobatan diabetes tipe 2. Obat kelas ini menghambat reabsorpsi glukosa di ginjal, mengontrol kadar glukosa darah. Inhibitor SGLT2 diketahui mengaktifkan jalur sinyal AMPK dengan meningkatkan ekspresi dan aktivitas protein kinase teraktivasi AMP (AMPK). Pengujian in vivo menunjukkan ekstrak etanol dan air daun bawang Wales (Allium fistulosum L) dapat mengurangi berat badan, berat hati, ukuran adiposit, dan meningkatkan ekspresi AMPK. Studi ini memprediksi aktivitas penghambatan (IC50) senyawa dalam Allium fistulosum terhadap SGLT2 dengan model prediksi Regresi Vektor Pendukung (SVR) dan deskriptor SkelSpheres. Hasil prediksi IC50 untuk senyawa dalam ekstrak etanol 70% Allium fistulosum secara in silico menunjukkan 4 derivatif tiramin dan 1 senyawa dekursidat memiliki aktivitas inhibitor Luar Biasa atau Kuat (IC50 < 1 µM). Di antaranya, empat senyawa kelompok tiramin adalah isomer N-trans-feruloyltiramin dan N-cis-feruloyltiramin, serta isomer N-trans-feruloyl-3'-metoksitiramin dan N-cis-feruloyl-3'-metoksitiramin. Temuan studi ini mengindikasikan bahwa kemampuan Allium fistulosum meningkatkan ekspresi AMPK mungkin dicapai melalui penghambatan SGLT2.


1. Pereira MJ, Eriksson JW. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs. 2019 Feb;79(3):219-230. doi: 10.1007/s40265-019-1057-0. PMID: 30701480; PMCID: PMC6394798.

2. Majewski C, Bakris GL. Blood pressure reduction: an added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015 Mar;38(3):429-30. doi: 10.2337/dc14-1596. PMID: 25715414; PMCID: PMC4876696.

3. Li M, Yi T, Fan F, Qiu L, Wang Z, Weng H, Ma W, Zhang Y, Huo Y. Effect of sodium-glucose cotransporter-2 inhibitors on blood pressure in patients with heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022 Jul 25;21(1):139. doi: 10.1186/s12933-022-01574-w. PMID: 35879763; PMCID: PMC9317067.

4. Padda IS, Mahtani AU, Parmar M. Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. 2023 May 21. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 35015430.

5. Dominguez Rieg JA, Xue J, Rieg T. Tubular effects of sodium-glucose cotransporter 2 inhibitors: intended and unintended consequences. Curr Opin Nephrol Hypertens. 2020 Sep;29(5):523-530. doi: 10.1097/MNH.0000000000000632. PMID: 32701600; PMCID: PMC8772383.

6. Bays H. Sodium Glucose Co-transporterType 2 (SGLT2) Inhibitors: Targeting the Kidney to Improve Glycemic Control in Diabetes Mellitus. Diabetes Ther. 2013 Dec;4(2):195-220. doi: 10.1007/s13300-013-0042-y. Epub 2013 Oct 19. PMID: 24142577; PMCID: PMC3889318.

7. Sung YY, Kim DS, Kim SH, Kim HK. Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complement Altern Med. 2018 Mar 20;18(1):105. doi: 10.1186/s12906-018-2152-6. PMID: 29558911; PMCID: PMC5861601.

8. Sung YY, Kim SH, Kim DS, Park SH, Yoo BW, Kim HK. Nutritional composition and anti-obesity effects of cereal bar containing allium fistulosum (welsh onion) extract. Journal of Functional Foods. 2014;6:428–37. doi:10.1016/j.jff.2013.11.009

9. Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation. 2022 Nov;146(18):1383-1405. doi: 10.1161/CIRCULATIONAHA.122.061732. Epub 2022 Oct 31. PMID: 36315602; PMCID: PMC9624240.

10. Yi Y, Chen D, Ao J, Zhang W, Yi J, Ren X, Fei J, Li F, Niu M, Chen H, Luo Y, Luo Z, Xiao ZJ. Transcriptional suppression of AMPKα1 promotes breast cancer metastasis upon oncogene activation. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8013-8021. doi: 10.1073/pnas.1914786117. Epub 2020 Mar 19. Erratum in: Proc Natl Acad Sci U S A. 2022 Jan 25;119(4): PMID: 32193335; PMCID: PMC7148563.

11. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux CJ, Segura-Cabrera A, Hersey A, Leach AR. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940. doi: 10.1093/nar/gky1075. PMID: 30398643; PMCID: PMC6323927.

12. Messinis DE, Poussin C, Latino DARS, Eb-Levadoux Y, Dulize R, Peric D, Guedj E, Titz B, Ivanov NV, Peitsch MC, Hoeng J. Systems biology reveals anatabine to be an NRF2 activator. Front Pharmacol. 2022 Nov 16;13:1011184. doi: 10.3389/fphar.2022.1011184. PMID: 36467029; PMCID: PMC9708905.

13. Hwang JT, Ryuk JA, Kim HJ, Jung DH, Ko BS. Validation study on the geometric isomers from bulbs of allium fistulosum and their conversion. Applied Biological Chemistry. 2020;63(1). doi:10.1186/s13765-020-00520-2

14. Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015 Feb 23;55(2):460-73. doi: 10.1021/ci500588j. Epub 2015 Feb 2. PMID: 25558886.

15. Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol. 2021;46:273-307. doi: 10.1016/bs.podrm.2020.07.005. Epub 2020 Aug 27. PMID: 33461699.

16. Chin WW. The partial least squares approach to structural equation modeling. In GA Marcoulides (Ed.), Modern methods for business research; 1998:295-336.

17. Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences. 5th ed. Boston: Houghton Mifflin; 2003.

18. Zheng H, Liu M, Li S, Shi Q, Zhang S, Zhou Y, Su N. Sodium-Glucose Co-Transporter-2 Inhibitors in Non-Diabetic Adults With Overweight or Obesity: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021 Aug 16;12:706914. doi: 10.3389/fendo.2021.706914. PMID: 34484120; PMCID: PMC8415407.

19. Nawaz S, Chinnadurai R, Al-Chalabi S, Evans P, Kalra PA, Syed AA, Sinha S. Obesity and chronic kidney disease: A current review. Obes Sci Pract. 2022 Jul 19;9(2):61-74. doi: 10.1002/osp4.629. PMID: 37034567; PMCID: PMC10073820.

20. Morin N, Visentin V, Calise D, Marti L, Zorzano A, Testar X, Valet P, Fischer Y, Carpéné C. Tyramine stimulates glucose uptake in insulin-sensitive tissues in vitro and in vivo via its oxidation by amine oxidases. J Pharmacol Exp Ther. 2002 Dec;303(3):1238-47. doi: 10.1124/jpet.102.040592. PMID: 12438548.

21. Carpéné C, Les F, Mercader-Barceló J, Boulet N, Briot A, Grolleau JL. High doses of tyramine stimulate glucose transport in human fat cells. J Physiol Biochem. 2022 May;78(2):543-556. doi: 10.1007/s13105-021-00864-3. Epub 2022 Jan 23. PMID: 35066863.

22. Morais TM, Melo TS, Dantas MB, Ferreira JM, Sousa DF, Magalhães EP, et al. Tyramine exerts hypolipidemic and anti-obesity effects in vivo. Brazilian Journal of Pharmaceutical Sciences. 2022;58. doi:10.1590/s2175-97902022e201191

23. Bashir MA, Javaid K, Shaikh M, Choudhary MI, Siddiqui H. Tyramine Derivatives as Potent Therapeutics for Type 2 Diabetes: Synthesis and In Vitro Inhibition of α-Glucosidase Enzyme. Med Chem. 2020;16(8):1124-1135. doi: 10.2174/1573406416666200128114422. PMID: 32003674.

24. Lino C de, Sales T de, Gomes PB, Amaral JF, Alexandre FS, Silveira ER, et al. Anti-diabetic activity of a fraction from Cissus verticillata and tyramine, its main bioactive constituent, in alloxan-induced diabetic rats. American Journal of Pharmacology and Toxicology. 2007;2(4):178–88. doi:10.3844/ajptsp.2007.178.188

25. Raj A. Unlocking the true power of support vector regression [Internet]. Towards Data Science; 2020 [cited 2023 Aug 6]. Available from: https://towardsdatascience.com/unlocking-the-true-power-of-support-vector-regression-847fd123a4a0