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Abstract

Wheat is one of the most important cereal crops worldwide, but the production and productivity of wheat is affected by
heat stress. A field experiment using an alpha lattice design with seven blocks was conducted on 35 elite wheat genotypes
in the Terai region of Nepal to identify the most appropriate trait resulting in a high-yielding wheat genotype with high
tolerance to heat stress. Correlation analysis revealed that booting-to-heading duration (BtoH), booting-to-anthesis dura-
tion (BtoA), plant height (Ph), spike length (SL), spike weight (SW), thousand grain weight (TGW), straw yield (SY),
and total biomass yield (TY) had a significant positive correlation with grain yield (GY), whereas days to booting (DTB),
days to heading (DTH), and days to anthesis (DTA) had significant negative correlations with GY (p <0.05). Path analysis
revealed that DTB and DTA had a direct negative effect on the GY, whereas DTH had an indirect negative effect on yield
via DTB. BtoA, Ph, SL, SW, and TGW had direct positive effects on yield, whereas BtoH had an indirect positive effect
on yield via DTB. Principal component analysis demonstrated that high-yielding genotypes can be selected using DTB,
DTH, DTA, BtoH, BtoA, and Ph. Taller and earlier genotype with long BtoH and BtoA would produce high yield under
heat stress.

Keywords: earlier, heat stress, taller, trait, longer inter-phenological stage, wheat

Introduction [17]. The global temperature was raised approximately

1.09 °C from 1850-1900 to 2011-2020 [18]. The
Wheat (Triticum aestivum L.) is the most widely warmest year on record is 2020, with an average
cultivated cereal worldwide, constituting approximately increase in temperature of 1.39 °C [18]. By 2050 the
28% of the global cereal production and 41.5% of the annual temperature is projected to increase by 1.6 °C in
global trade. It is a major source of calories for 35% of South Asia, increasing by 6°C by the end of the 21st
the global population and is consumed as a staple food century [19]. In Nepal, the mean temperature is rising at
crop in more than 40 countries [1-3]. Temperature is a a rate of 0.06 °C per year [20]. The temperature of the
major abiotic factor that regulates plant growth, Terai region of Nepal has increased by 1 °C in the last
development, and yield [4-6]. However, temperature three decades. The IPCC forecasted that heat waves
above 24 °C has become a serious threat to global wheat would be more intense and warmer and might convert
production [7, 8], affecting approximately 57% (200 long-productive-season and mega environments into
million hectares) of the global wheat-growing area each short-season heat-stressed environments [18]. Owing to
year [9, 10]. Wheat is extremely sensitive to heat stress gradually increasing temperature, the frequency of
[11, 12], and a temperature 5 °C-10 °C above the terminal heat waves is increasing in South Asian
optimal range (18 °C-24 °C) is considered heat stress in regions, including Nepal. Terminal heat stress during
wheat cultivation. Moreover, heat stress causes the reproductive and ripening stages of wheat has posed
irreversible changes in the growth, morphology, a serious threat to the nation’s wheat production [21],
phenology, and yield performance of wheat [13, 14]. An and yield decreases by 6% each degree rise in
increase in temperature above 24 °C in wheat generally temperature [22]. The severity of yield reduction is
induces pollen sterility [15], pollen unviability [15], and predicted to decrease by up to 17% in the Indo-Gangetic

causes grain shrinkage [16], ultimately reducing yield

216 September 2024 | Vol. 28 | No. 3



Phenotypic Correlation, Path Analysis, and Quantitative 217

Plains of South Asia [23]. Hence, breeding climate-
resilient heat-stress-tolerant genotypes is crucial.

Increase in temperature decreases the net leaf area for
photosynthesis, induces early leaf senescence [24],
shortens grain-filling duration [25], increases net
photorespiration, and promotes male sterility in wheat
[26]. Ultimately, the effects would be observed on spike
length (SL), spikelets per spike (SPS), net spike weight
(SW) [27], number of grains per spike (GPS), and net
grain weight [28].

To provide people with all necessary carbohydrates,
proteins, and calories, wheat production should be
increased by 16% (118 million metric tons) and is
predicted to increase up to 198 million tons by 2050
[29]. Heat stress is the major abiotic stress leading to
poor wheat production [30]. Thus, identifying climate-
resilient wheat cultivars is crucial for global food and
nutritional security [31]. Heat stress influences all the
morphological parameters of wheat and reduces yield
by up to 24%-48%, causing an annual economic loss of
US$10.66-12.78 billion on the global scale. Phenotypic
correlation and path analysis would facilitate the
identification of climate-resilient wheat genotypes
based on various independent morphological traits [32],
and identifying the most appropriate traits would help
to enhance the production and productivity of wheat,
helping to achieve the goal of SDG 2.0 [31].

Materials and Methods

The field experiment was carried out at the Institute of
Agriculture and Animal Science (IAAS), Paklihawa
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Campus, in 2022. The experimental site (27°29'02"N,
83°27'17"E) is in the western region of Nepal, with a
tropical climate and elevation of 104 m above sea level.

The agrometeorological data of the experimental site
were obtained from the Department of Hydrology and
Meteorology, Bhairahawa (Figure 1).

A total of 35 elite wheat genotypes were provided by the
National Wheat Research Program, Bhairahawa,
including three commercial check varieties: viz, Bhrikuti
and Gautam, and RR 21 was used in the study (Table 1).

The experiment was conducted using a serpentine alpha
lattice design and replicated twice with seven blocks.
Each block contained five plots. Each genotype was
planted in a plot size of 10 m? (4 m x 2.5 m). Wheat
genotypes were sowed on 25th December. Wheat was
sowed later so that the flowering and grain-filling periods
of the wheat genotypes coincided with the terminal heat
stress event in February and March. Each plot had a row-
to-row spacing of 25 cm, and continuous sowing was
done using line sowing method. The plots were 50 cm
apart, and two replicates were 1 m apart. The
recommended fertilizer dose (100:60:40 NPK kg per
hectare) and 10 tons per hectare farm yard manure were
applied [33]. The plants were irrigated at the field
preparation, crown root initiation, booting, heading, and
grain-filling stages. Intercultural operation (weeding)
was performed manually at 21 and 40 days after sowing.
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Figure 1. Agrometeorological Parameters in the Experimental Site
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When the crop reached harvestable maturity, the grains
were dried and harvested manually with serrated sickles.
The harvested wheat was threshed on the floor by beating
with sticks and hands. Phenological data days to booting
(DTB), days to heading (DTH), and days to anthesis
(DTA) were determined when 50% of the whole popula-
tion reached their respective stages. Booting-to-heading
duration (BtoH), booting-to-anthesis duration (BtoA),
and heading-to-anthesis duration (HtoA) were deter-
mined by observing consecutive phenological stages.
Plant height (Ph), SL, SPS, GPS, SW, thousand grains
weight (TGW), grain yield (GY), straw yield (SY), and
total biological yield (BY) were determined at the time
of harvest at physiological maturity. Data entry and pro-
cessing were performed using Microsoft Excel 2016.
Correlation analysis was performed using IBM SPSS
Statistics version 26.0, and path analysis was performed
using Microsoft Excel 2016.

Results and Discussion

The result of analysis of variance (ANOVA) among 35
wheat genotypes showed significant differences in the
yield-attributing characteristics, except SY, among the
tested genotypes (Table 2). This result indicated suffi-
cient variability among the tested genotypes. Hence,
these characteristics are useful in selecting cultivars that
can tolerate heat stress.

GY exhibited significant positive correlation with BtoH,
BtoA, Ph, SL, SW, TGW, SY, and total biomass yield
(TY; p <£0.05). GY showed a significant negative corre-
lation with DTB, DTH, and DTA (p <0.05; Table 3). The
results suggest the selection of taller and early maturing
genotypes that have long SL, high net SW, and TGW val-
ues should be promoted. The selection of earlier geno-
types with high yields under heat stress has been sug-
gested [34], and it has been reported that, a genotype that
produces a TGW of 38.5 under heat stress will have a
TGW of approximately 45 and yield of up to 5 tons per
hectare under irrigated conditions [35]. Figure 1 shows
that the temperature at the booting and heading stages
was 25.5 °C and the anthesis was 30.5 °C. A temperature
above 24 °C at the reproductive and grain ripening period
is detrimental to wheat and promotes earlier senescence,
reducing the net grain-filling period of wheat [36, 37].
The net grain-filling period decreases with increasing
DTB because the temperature increases from mid-Janu-
ary when wheat grown under heat stress is in the jointing
stage. A genotype with earlier booting and heading
would not be subjected to terminal heat stress, which oc-
curs in March (Figure 1) [35]. The performance of crops
under heat stress conditions is mainly determined by can-
opy temperature, which facilitates the development and
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growth. Tall plants are often associated with cool canopy
temperatures [38, 39]. Tall wheat genotypes perform well
under heat stress conditions [27, 34]. Cooler temperature
reduces heat shock on growing cells and facilitates opti-
mum photosynthesis and sink transport [40, 41]. Simi-
larly, high biomass and SY are associated with cool can-
opy temperatures and high levels of net photosynthesis
and sink transport. Hence, a genotype with high SY and
biomass produces high yields under heat stress (Table 2).
Genotypes with long spikes have high yield under heat
stress conditions [42] because spikes have photosynthetic
cells and are associated with photosynthesis and contrib-
ute to approximately 20.1% of the yield.

BtoH and BtoA had significant positive contributions to
the GY of wheat. A genotype with long BtoH and BtoA
would have sufficient time for pollen formation, pollen
maturation, and ovule maturation and effective pollina-
tion. The effect of BtoH is indirect via DTB because a
genotype with delayed booting would suffer from ter-
minal heat stress. To cope with such an effect, a geno-
type should grow its pollen and ovule inside the flag leaf
before emergence. Flag leaf sheath protects maturing
pollens and ovules from heat waves. BtoA has a positive
direct effect on the GY of wheat (Table 4) and promotes
efficient pollen and ovule maturation inside the flag leaf
sheath and a longer time for pollination that promotes
net GPS of the grains via effective pollination and There
is a positive association between BtoA with net GPS of
wheat as well (Table 3).

DTB, DTA, BtoH, HtoA, and SPS exerted a negative di-
rect effect and thus had negative contribution to the GY
of wheat. By contrast, DTH, BtoA, Ph, SL, net spike per
meter square (NSPMS), SW, GPS, and TGW had posi-
tive direct effect and hence, positive contribution to the
GY of wheat.

However, DTH had an overall negative association with
the GY of wheat (Table 3), that is, DTH had an indirect
effect on the GY of wheat via DTB (Table 4). BtoH had
an overall positive association with the yield of wheat but
a direct negative effect, indicating that BtoH duration af-
fects yield via DTB (Table 4). Thus, a genotype with a
short DTB generally preferred in environments under
heat stress (Table 3 and Table 4) and should have a long
BtoH to increase yield under these environments. [42] re-
ported that earlier genotypes have high yields because
DTB has a directly negative effect on yield given that
temperature in a field increases after the jointing period
of wheat and delayed DTB would lead to a terminal heat
stress in February and March.
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Table 4. Path Analysis Among Grain yield and 13 Independent Traits of Wheat

DTB DTH DTA BtoH HtoA BtoA Ph SL NSPMS SW SPS GPS TGW
DTB -1.227 -1.098 -1.016 1.072 0.264 1.058 0531 0.372 0.147 0561 -0.266 0.307 0.172
DTH 0.658 0.736 0.644 -0.416 -0.248 0477 -0.300 -0.270 -0.141 -0.295 0.085 -0.072 -0.111
DTA | -0.180 -0.191 -0.218 0.125 —0.034 0.093 0.088 0.067 0.034 0.063 -0.025 0.031 0.022
BtoH 1.098 0.710 0.723 -1.256 -0.039 -1.114 -0.447 -0.201 -0.018 -0.511 0.344 —0.446 -0.119
HtoA 0.042 0.065 -0.031 -0.006 -0.193 -0.095 -0.009 -0.030 -0.017 -0.050 0.003 0.015 -0.022
BtoA | —-0.566 -0.426 —0.282 0.582 0.322 0.657 0.218 0.139 0.035 0.311 -0.162 0.180 0.089
Ph -0.082 -0.078 -0.077 0.068 0.009 0.063 0.190 0.115 -0.004 0.088 -0.042 0.016 0.025
SL -0.088 -0.107 -0.089 0.047 0.045 0.062 0.176 0.291 —-0.052 0.140 0.070 0.090 0.053
NSPMS | —-0.038 -0.061 -0.049 0.004 0.028 0.017 -0.007 -0.056 0.318 -0.155 -0.118 -0.133 -0.160
SW -0.017 -0.015 -0.011 0.016 0.010 0.018 0.018 0.018 -—0.019 0.038 0.003 0.019 0.023
SPS -0.030 -0.016 -0.016 0.038 0.002 0.034 0.031 -0.034 0.052 -0.012 -0.139 -0.034 -0.022
GPS -0.019 -0.007 -0.011 0.026 —0.006 0.020 0.006 0.023 —0.031 0.037 0.018 0.074 0.003
TGW | -0.058 -0.063 -0.041 0.040 0.048 0.057 0.055 0.076 —0.210 0.252 0.066 0.020 0.417
GY -0.509 -0.551 -0.472 0.341 0207 0.393 0550 0.510 0.096 0.467 -0.162 0.066 0.369
®12
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Figure 2. Biplot Analysis of Morphological Traits and Genotypes
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DTB, DTH, and DTA exhibited a highly significant
negative correlation with GY. DTH showed a direct
positive effect but an indirect negative effect on GY via
DTB, DTA, and BtoH. BtoA and BtoH showed a
significant positive correlation with GY through its direct
positive effect. However, BtoH showed a direct negative
effect but indirect positive effect on GY via DTB, DTA,
and BtoA. Ph and SL showed a significant positive effect
on GY through their direct positive effect because the
increase in Ph resulted in an increase in area exposed to
sunlight and facilitated photosynthates. Increase in spikes
allowed more grains to be accommaodated in the spikes,
increasing GPS, which had a positive correlation with
GY (Table 3).

Principal Component Analysis (PCA). Principal
component analysis (PCA) was conducted, and a biplot
was constructed to summarize the correlations of various
morphological parameters with the GYs of the wheat
genotypes. The first six principal components explained
83.57% of the total variation in the data (Figure 2). PCA
extracted six principal components, and according to the
ranking of PC1 with various morphological parameters,
DTB, DTH, BtoA, DTA, BtoH, and Ph were determined.
In the biplot of PCA, the correlation among the
morphological parameter is given by the angle between
their vectors. The indices are significantly positively
correlated if the angle between the vectors is less than
90°, significantly negatively correlated if the angle is
more than 90°, and independent if the angle between their
vectors is 90° [43]. Therefore, DTB, DTH, and DTA
were the phenological traits that had a significant
negative correlation with the GY of wheat, whereas BtoH
and BtoA had a significant positive correlation with the
GY of wheat and Ph had a significant positive
contribution to the GY of wheat (Figure 2) PCA revealed
that the selection should based on the phenological traits
DTB, DTH, DTA, interphenological BtoH and BtoA, and
growth trait; Ph can be employed for the identification of
the high-yielding genotype of wheat under heat stress
conditions. Thus, early maturing and tall genotypes that
have long BtoH and BtoA would generate high yields
under heat stress.

Conclusion

Heat stress reduces yield up to 46% and affects 42% of
the total wheat-growing area of the world. To identify
the most appropriate trait for the selection of heat-
stress-tolerant genotype of wheat, correlation, and path
analysis were performed on the datasheet from thirty-
five elite wheat genotypes. Correlation shows, a signif-
icant positive correlation of GY with BtoH, BtoA, Ph,
SL, SW, TGW, SY, and TY and significant negative
correlation with phenological stages, DTB, DTH, and
DTA. Path analysis revealed that DTB and DTA have a
direct negative effect on the GY of wheat, whereas,
DTH has an indirect negative effect on yield via DTB.
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BtoA, Ph, SL, SW, and TGW had a direct positive effect
on yield whereas, BtoH duration had an indirect posi-
tive effect on yield via DTB. PCA results showed that
DTB, DTH, and DTA had significant negative correla-
tion with GY, whereas BtoH, BtoA, and Ph had a sig-
nificant positive correlation with GY. In summary, se-
lection based on phenological stages DTB, DTH, DTA,
inter-phenological duration BtoA, BtoH, and Ph can be
used as morphological traits for the selection of high-
yielding wheat genotypes tolerant to heat stress. The
taller and earlier maturing genotype that has long BtoH
and BtoA would produce high yield under heat stress.
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