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Abstract 
 

We consider the correction of ground state energy of one-dimensional Gross-Pitaevskii equation by adding a gain-loss 
term as a time-dependent external potential. The interesting purpose of this term is that it can be used to explain the 
experimental results especially in the nonlinear fiber optics regarding the pulse propagation and collapse-revival of the 
condensate in the Bose-Einstein condensation. In the Bose-Einstein condensation itself, the function can represent that 
condensate can interact with the normal atomic cloud. Some analytical solutions have been obtained by choosing an 
ansatz solution of the wave function and its solution can be dark or bright soliton. Since the Gross-Pitaevskii equation 
can be treated as a macroscopic quantum oscillator, we can use time-dependent perturbation theory as in ordinary 
quantum mechanics to find the ground state energy correction if we assume other terms to be very small. In addition, 
time-dependent potential allows a transition from one energy level to others. In this case, we expand the solution of 
nonstationary one-dimensional wave function as a linear superposition of harmonic oscillator normalized eigen 
functions. To get the recursive formulas, we suggest an option to formulate the coefficients after inserting the initial 
condition which must be satisfied such as in quantum mechanics. 
 
Keywords: Bose-Einstein condensation, Gross-Pitaevskii, quantum oscillator  
 
 
 
1. Introduction 
 
The realization of Bose-Einstein condensation (BEC) in 
ultra cold atomic gases was initially verified by a 
sequence of experiments in 1995 by Anderson et al. 
(vapor of rubidium) and Davis et al. (vapor of sodium) 
that those atoms were confined in magnetic traps and 
cooled down to low temperatures at an order of 
microkelvins  [1].  For  the  detail  discussions  see  also 
[2-3]. On the other hand, cigar-shaped BEC has been 
considered as an interesting subject especially in the 
coherent atom optics [4-6]. In these verifications, 
theoretical exploration of characteristic of Bose gases 
needs a mathematical model describing those systems at 
very low temperatures. The first proposed model is the 
nonlinear Schrödinger equation, which is usually called 
Gross-Pitaevskii equation (GPE), which describes the 
dynamics of interacting condensed atomic clouds in 
three-dimensional, trapped in anisotropic external 
parabolic potential achieved by magnetic trap. Some 
discussions on the results of GPE have been considered 
by reducing it to one-dimensional model by assuming 
the case of cigar trap (highly anisotropic) of the axial 
symmetry [7-11]. This is observed as a classical 

nonlinear equation that can be treated as a nonlinear 
generalization of a macroscopic quantum oscillator [9]. 
Although the model is considered as a valid model for 
analyzing BEC at 0≅T  K, GPE has no analytical 
solution for cylindrical symmetry, except in the 
framework of Thomas Fermi approximation [7,9]. 
However, the general property of GPE equation is the 
existence of soliton solutions shown by their numerical 
result since GPE is a pure nonlinear Schrödinger 
equation if we only keep nonlinear potential and remove 
all the rest of external potential terms.  
 
In literatures, many authors investigated the effect of 
gravitation [12] by adding the gravitational potential as 
an external interaction, gain or loss in the discussion of 
pulse propagation in nonlinear fiber optics and collapse-
revival of the condensate by adding a time-dependent 
function [13-14]. Here, we are interested in discussing 
the effect of gain or loss as described by the time-
dependent potential in GPE. In recent Letters [13-14], 
an analytical solution has been obtained by proposing an 
ansatz wave function solution. The ansatz solution is 
chosen by the recent inspiring experiments. The aim of 
this paper is to find the correction of ground state 
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energy of the macroscopic oscillator by extending the 
work done by Kivshar et al. [7], who suggested that 
physical features of eigen modes remain valid in the 
nonlinear case. 
 
In this paper, we analyze the correction of nonlinear 
eigen energy of the macroscopic quantum oscillator 
ground state by using time-dependent perturbation 
theory. For this purpose, we extend a similar procedure 
proposed by Kivshar et al. [7] by assuming that a one-
dimensional nonlinear nonstationary state is built by 
applying linear superposition of quantum oscillator 
normalized eigen functions. The rest of this paper is 
organized as follows. We derive the mathematical 
model of GPE in Sec. 2 by applying axial symmetry and 
transforming all coordinates into dimensionless ones in 
order to reduce 3D nonstationary GPE into 1D 
nonstationary GPE. In Sec. 3, we apply our 
nonstationary GPE equation to calculate the correction 
of ground state energy of macroscopic oscillator system 
represented by expansion coefficients. We close our 
discussion in Sec. 4 with conclusions based on our final 
results.  
 
2.  Methods  
 
In this section, our concern is to reduce 3D 
nonstationary GPE into 1D nonstationary GPE by 
applying axial symmetry. We start with considering 
condensed atomic clouds confined in a three-
dimensional anisotropic parabolic potential and 
contained loss or gain term )(tη [13-14] 
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where ),( trrψ is the macroscopic wave function of 
condensate, )(rV r is the three-dimensional anisotropic 
parabolic trap given by 
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maU /4 2hπ=  (a is the s-wave scattering length) 
describes two-particle interaction in the condensate 
which can be repulsive ( 0>a ) or attractive ( 0<a ), 
and η(t) is the arbitrary function which is 
phenomenologically related by a gain or loss term. The 
wave function itself is assumed to be normalized by 
defining the number of particles in condensate 

                              rdN r32
∫= ψ                                (3) 

To discuss cigar-shaped BEC of the axial symmetry, we 
imply the condition on parabolic trap λx = λy = 1 and 
define the parameter λz as the quotient between 
frequency propagating along z direction (ωz) and radial 
one (ω ), ωωλ /zz = , is very small 1<<zλ . After 
that, it is convenient to transform cylinder coordinate to 

dimensionless coordinate in order to make easier our 
discussion (some authors have their conventions, for 
comparison see [7-9]) 
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where 22 yxr +=  and zma ωλ/0 h=  is the 
harmonic oscillator length with frequency zω . In 
addition, we also define new functions by the following 
transformations 
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With these changes, the GPE in Eq. (1) becomes 
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Now, our purpose is to simplify Eq. (10) in order to 
make separated variables by defining the wave function 

),,( τρ su  under the transformation 

                  γττερφτρ iessu 2),()(),,( −=                   (11) 

After substituting Eq. (11) into Eq. (10), one obtains 
two expressions in the left and right hand side. To make 
equations consistent both sides should be constant. For 
simplicity we choose the constant value to be zero. By 
this condition, one of those two expressions should be 
quantum harmonic oscillator in two dimensions written 
in polar coordinate as  
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One of the simple solutions is the ground state solution 
which can be chosen as 
                            ( )2/exp)( 2γρρφ −= C                   (13) 
For this choice, the arbitrary parameter γ  in Eq. (11) 
can be related to zλ  by substituting Eq. (13) into Eq. 
(12), then one will obtain zλγ /1= . On the other hand, 
C can be determined by imposing the normalization 
condition 
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and one will also get πγ /=C  
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Since the last expression still contains φ term, we have 
to eliminate the dependence of φ by multiplying both 
sides by |φ|2, integrating over the space and absorbing 
the resulting constant into Q, thus one will obtain one-
dimensional nonstationary GPE 
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3. Results and Discussion 
 
In Sec. 2, we have derived the one-dimensional 
nonstationary GPE which can be considered as the 
propagating nonlinear wave along s direction. If we 
remove the nonlinear and gain-loss term, the problem 
should be the one-dimensional eigenvalue equation of 
quantum harmonic oscillator. By this fact, we can apply 
perturbative solution which 1D nonstationary GPE 
solutions in Eq. (15) should be an expansion of a set 
normalized eigenfunctions of harmonic oscillator. 
Before discussing the solution method, we should 
review some useful expressions of 1D quantum 
harmonic oscillator in dimensionless unit. The 
eigenvalue equation in ordinary quantum mechanics can 
be written as  
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where 12 += nEn  are discrete energies and )(snΩ  
should be normalized eigenfunctions of harmonic 
oscillator in quantum mechanics written in 
dimensionless unit 
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Here, )(sH n  are Hermite polynomials written in 
Rodrigues formula  

                 ⎟
⎠
⎞⎜

⎝
⎛−= − 22

)1()( s
n

n
sn

n e
ds
desH                  (18) 

 
Finally, the perturbative GPE solution can be supposed 
in the form  
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where E is the total energy of system. After inserting the 
expansion (19) into Eq. (15), multiplying by *

mΩ  on 
both sides, and integrating over the space, we obtain the 
following equation   
         )())()(( τττ mmm AgEEA &+−−  

                    0)()()(
0

* =+ ∑
=

mnlkkl
nlk

n VAAAQ τττ     (20) 

where τddAA mm /=&  and 
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For the ground state case ( 0=m ), we assume that 
mAA >>0  for 0≠m , we find the expression 
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To include the initial condition to the expansion 
coefficients and gain-loss term, we propose one 
suggestion at 0=τ , according to the time-dependent 
perturbation theory in quantum mechanics system 
should be in the particular state. However, we can 
choose the state as the ground state since we only 
concern at that state 
                           ).()0,( 0 ss Ω=ε                               (23) 
By this assumption, we conclude that the initial 
condition satisfied by 0A  should be written as 

                     000 )0( δ=A  and 0)0(0 =A&                  (24) 
 
In addition, we also apply the initial condition for )(τg , 
let us say )0()0( gg ==τ . Finally, after inserting all 
the conditions into Eq. (22) simultaneously, we obtain 
the correction of the ground state energy as 
                0000

2
00 )0()0( VAQgEE −+=               (25) 

By observing that sets of nΩ  are even functions for 
even n, )()( ss nn −Ω=Ω , it is possible to construct the 
formulation of all even coefficients via Eq. (20) by 
solving linear differential equation 
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Note that one could also solve first-order linear 
differential equation by using Frobenius method to 
obtain the coefficients, should the explicit functions 
have been known.  
 
4. Conclusion 
 
We have obtained the correction of ground state energy 
of one-dimensional GPE with gain-loss term by 
applying time-dependent perturbation theory and 
assuming that physical entities of eigen modes remain 
valid in the nonlinear case. The gain-loss term itself can 
be considered as a time-dependent potential describing 
the interaction between the condensate and normal 
atomic cloud. To obtain the solution, we have reduced 
the three-dimensional GPE into one-dimensional GPE 
by transforming all quantities in the equation and 
applying the axial symmetry. In this case, we suggest an 
alternative perturbative solution to obtain the correction 
by expanding the coefficients and applying the 
conditions.  
 
The extension of GPE by including gain-loss term is 
inspired by a series of experimental results of 
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propagation of pulse in nonlinear fiber optics and 
collapse-revival of the condensate [14]. Both of them 
describe the propagating soliton which can be dark or 
bright. Specially, we can determine the appropriate 
function of gain-loss term to explain the experiment 
result. Some specific functions have been considered, 
for example in Ref. [13-14] in order to analyze special 
cases, discussion about nonlinear fiber optics in Ref. 
[13] and soliton trains of BEC in Ref. [14]. However, in 
some literatures BEC is also used as a model to study 
the cosmological aspects [15-17], for example for the 
description of dark matter [18]. 
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