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Abstract

Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ
polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The
aims of this study were to examine the nanocomposite structure using different tools and to compare the results between
the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any
apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction) graphs, DSC (Differential Scanning
Calorimeter) analysis and TEM (Transmission Electron Microscope) images revealed that the modified clay-epoxy and
unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay
layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern
were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be
used to determine the nanocomposite structure.

Keywords: epoxy resin, montmorillonite, XRD, DSC

1. Introduction

Polymer layered silicate nanocomposites (PLSNs) have emerged among the other nanomaterials for over the past
decade. Layered silicates, with their high surface area and aspect ratio, give a high reinforcement efficiency even at low
contents (1–5%). Conventional composites usually use high loadings of micro fillers (30 – 50%). So that, PLSNs are
promising materials in the future as the need of layered silicates is low and the price of layered silicates is reasonably
cheap. More over, silicate addition enhances mechanical properties, optical properties, gas barrier properties and, heat
distortion temperature [1-4].

Montmorillonite or MMT, one of the common silicates, is a crystalline, 2:1 layered clay mineral in which a central
alumina octahedral layer is sandwiched between two silica tetrahedral layers [5]. The layers are separated by a regular
spacing, which is commonly termed as gallery. Thus, the layers themselves are in negative charges, and they are usually
balanced with Mn+.xH2O (typically Ca2+ / Mg2+ or Na2+ /K2+) are located naturally on the MMT layers. This results
in that MMTs possess hydrophilic property and are not able to react with any polymer. However, MMTs have the ability
to exchange ions, which means the clay layers are modified by an onium ion substitution reaction. Alkylammonium
cations provide functional groups so that the clay then becomes possible to react with organics. In other words, without
cation exchange reaction, the monomer or polymer is not able to move into the clay gallery.

A number of different groups have worked on clay-epoxy systems [6]. The basic principle of PLSN synthesis is that the
polymer or its monomer is able to move in and react within the inter layer galleries of the layered silicate. The molecules
will intercalate into the gallery when the nature and polarity of the layered silicate gallery is similar to that of the resin
and the hardener. A thermodynamic equilibrium between the surface energy of the layered silicate and the polarity of the
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swelling monomers determines the intercalation process. The curing process in the galleries changes this equilibrium
and enables further reactive monomers to diffuse into the gallery. This dispersion process results in the increase of the
gallery distance. Then, a balance between the intergallery and extragallery polymerization rate is critical to achieve
intercalation and subsequent exfoliation [7]. The kinetic study of this material is usually examined by DSC. Only one
exothermal peak is observed by DSC [8-14]. The addition of organo silicates shifts the exothermal peak to lower
temperature [8, 9, 10, 11]. This suggests that the surface of the modified clay plays a significant role in the
homopolymerization. More over, Chin believed that 40% of a total H was used in an exfoliation process [9].

The establishment of PLSN structure is quite complicated and influenced by a significant number of factors, such as the
nature of the clay and the polymer, the processing parameters, and the clay layer distribution, which relates to the
heterogeneity. When the clays are dispersed in the polymer, two types of PLSN structures can be obtained, namely
intercalated and exfoliated structures. When a small increase of the gallery distance occurs, intercalated structures are
formed. On the other hand, when the silicate layers are well separated and individually dispersed in the polymer matrix,
exfoliated structures are formed. Since the latter structure is more homogeneous than the former, exfoliated
nanocomposites exhibit better properties. However, it is difficult to obtain an exfoliated structure by itself. In fact some
studies show that polymer nanocomposites possess mixed structures or an intercalated structure only [10]. XRD and
TEM are a common practice to determine the PLSN structure. AFM (Atomic Force Microscopy) is another tool to
observe the morphology of the surface. However, a more precise study should be conducted to quantitatively determine
the nanocomposite structure.

The majority of the work on the clay-epoxy systems has focused on the synthesis and characterization of physical and
some mechanical properties. In this work the kinetic study of the unmodified clay-epoxy and organo clay-epoxy as well
as the clay-epoxy-hardener mixtures was examined using DSC. The morphology of the materials was observed using
TEM and reflected XRD methods. To support the XRD in the reflection mode, a transmitted XRD method was also
applied. The objectives of this research were to investigate the influence of organo clay and unmodified clay to the
morphology of the clay-epoxy systems using different tools.

2. Experimental

The material used in the present work was Diglycidyl ether of bisphenol A / DGEBA resin (Araldite Algy 9708-1)
purchased from Ciba-Geigy combined with     1-Methylimidazole (1-MI), purchased from Aldrich, as the curing agent.
The fillers were commercial MMTs, namely Nanomer I30E, Cloisite 30B and Cloisite NA+. Here after, the fillers are
identified as I30E, C30B and CNA.

The epoxy and clay powder were dried overnight at     50 C in a vacuum prior to sample production. Unfilled epoxy
specimens were made by mixing the epoxy resin and 2.5 wt% hardener and then blending them in a SpeedMixer at 3000
rpm for 1 min. Filled specimens were synthesized by mixing the desired amount of clay with epoxy resin at (76  1) C
using an overhead stirrer for 30 min; 2.5 wt% of hardener was then added into the mixture and mixed in the SpeedMixer
at 3000 rpm for  1 min. The blend was poured into release-agent-coated-aluminum moulds with mylar-sheet-covered
glass bases, then cured at 160 C for 2 hours, and followed by a post-cure at 180 C for 2 hours.

Circular moulds with a diameter of 25 mm and a thickness of 2 mm were prepared. The coin-shaped samples were
ground using sand paper of 1200 grid to obtain a homogenous thickness of 1mm. These samples were used for XRD
observations.

Differential Scanning Calorimeter (DSC) analyses were conducted on a Perkin-Elmer DSC-7 using Pyris software.
Calibration was carried out prior to measurements using indium and zinc standards. Liquid samples of 15-25 mg weight
were sealed in aluminum pans and heated from 25 C – 400 C at a scanning rate of 10 C/min.

X-ray diffraction (XRD) analysis was performed using a Phillips PW 1130 generator which was equipped with Traces
software. A voltage of 40kV and current of 25mA were employed for Cu K  radiation. Measurements were performed
in a range of 2   = 1  – 30  for the unfilled and filled epoxy samples as well as the dried MMT powder. The reflected
and transmitted methods were applied for all samples.

Transmission Electron Microscope (TEM) samples were cut using a Leica Reichert Ultracut S Microtome with a
Diatome diamond knife, which was placed at an angle of 6 . The 70 nm thickness of sections were collected on



8
MAKARA, SAINS, VOL. 10, NO. 1, APRIL 2006: 6-12

hexagonal 300 mesh copper grids. The images were obtained from a Phillips EM 420 Transmission Electron
Microscope (TEM), which was operated in bright field mode at 100 kV.

3. Results and Discussion

MMT epoxy based nanocomposites were synthesized by in-situ polymerisation. Six MMT-epoxy systems were
produced from the three organoclays and two different clay loadings 2.5wt% and 5wt%.

DSC studies of MMT-DGEBA for the I30-DGEBA, C30B-DGEBA and CNA–DGEBA systems are shown in Figure
1a. Only one exothermal peak is observed for the I30E-DGEBA and C30B-DGEBA systems and it is obvious that the
untreated CNA clay does not swell in the DGEBA. These thermograms demonstrate that a reaction between clay and the
epoxy takes place at a temperature range of 212 – 221 C for the I30E- DGEBA systems and of 289 – 296 C for the
C30B-DGEBA systems. These two thermograms show a contrast result. For the I30E-DGEBA systems, the peaks shift
towards lower temperature due to enhanced reaction rate with the increasing clay content. In contrast for the
C30B-DGEBA systems, the peaks shift toward higher temperature due to inhibited reaction rate with the increasing clay
content.

Figure 1(a). DSC analysis of DGEBA and MMT-DGEBA, showing the swelling process in the I30E-DGEBA and the
C30B-DGEBA systems
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Figure 1(b). DSC analysis of curing agent-DGEBA and MMT-curing agent-DGEBA
These results suggest that the I30E organoclay play a catalytic role in the homopolymerization of DGEBA [8]. The DSC
results also show that the heat released by the systems increases as the clay content increases. This also indicates that a
spontaneous clay-DGEBA reaction process takes place at the above temperature range.

Figure 1b shows the DSC results of the MMT- hardener-DGEBA- mixtures of the I30- hardener-DGEBA,
C30B-hardener-DGEBA, and CNA– hardener-DGEBA systems. Similar to previous studies, one exothermal peak is
observed in the thermograms. The epoxy polymerisation takes place in the onset temperature of 129 C and the heat
released is 423 J/g. These thermograms demonstrate that a reaction occurred in the mixtures at a temperature range of
131 – 136 C for all systems. This indicates that the presence of MMT, both modified and unmodified, does not impede
greatly the reaction between the epoxy and the curing agent, even though the onset temperature obtained is slightly
higher than that of the unfilled epoxy. Some amount of heat is consumed for the reaction between the MMT and the
epoxy as the heat released of the MMT-epoxy systems are lower than that of the epoxy. This result is in accordance with
previous studies [9, 11]

Comparing Figures 1a and 1b, it is obvious that curing agent addition shifts the exothermal peak to a lower temperature
for the I30E-epoxy and C30B-epoxy cases. The explanation for this is that the viscosity became high during the curing
process of epoxy, which means the three-dimensional cross-linking process occurred. So that, the reaction takes place in
the temperature range of 131 – 136 C, near the epoxy polymerisation temperature, instead of in the temperature above
221 C. A few previous studies also showed similar results with the current result [9, 11, 14]. In this critical state, a
balance between the intergallery and extragallery polymerization rate determined the opening of the gallery layers.

The heat released, as shown in Figures 1a and 1b, are in contrast for the I30E-epoxy and C30B-epoxy systems. The heat
released by the I30E-DGEBA is bigger and by C30B-DGEBA is smaller than by their nanocomposite systems. This
indicates, once again, that the I30E plays a catalytic role while the C30B plays an incatalytic role. This relates with their
active exchanged ions on their clay surfaces. The exchanged ion is, in fact, one of the key factors in intergallery and
extragallery polymerization rate, and at the end this determines final gallery distance.

Figure 2 is powder diffractograms of pure dry MMT for the three different organoclays. They show a strong peak due to
(001) corresponding to a d-spacing of      2.2 nm, 1.83 nm, and 1.21 nm for I30E, C30B and CNA organoclays
respectively. Moreover, the (002) and (101) peaks are quite evident for I30E and C30B organoclays.
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Figure 3a and 3b shows the reflected and transmitted XRD patterns of nanocomposites respectively. The clay (001) peak
is not apparent in the reflected patterns for

Figure 2. XRD patterns of dry MMTs.
all systems and a broad peak at 2  = 17.5  appeared in these patterns. This broad peak shows the epoxy was in an
amorphous state. In general, the reflected XRD pattern is a typical diffractogram of nanocomposites and this indicates
that the d-spacing of clay galleries expanded up to a bigger d-spacing value than 8.8 nm (2   = 1). It is interesting to
note that the (001) peak of CNA also disappeared, which suggested that CNA organoclay layers were exfoliated. From
the transmitted XRD analysis, two broad peaks of the amorphous unfilled epoxy can be seen in Figure 3b. It is obvious
for the I30E-epoxy and C30B-epoxy systems that the higher the clay contents, the flatter the peaks. These patterns verify
that the organoclay particles were well dispersed in the epoxy,  forming  more amorphous states
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Figure 3(a). Reflected XRD patterns of MMT-epoxy nanocomposites

Figure 3(b). Transmittted XRD patterns of MMT-epoxy nanocomposites
compared to the unfilled epoxy [16]. In contrast, in the CNA-epoxy systems, the CAN clay particles do not change the
morphology of the system. This result together with DSC results confirmed that this untreated clay does not swell and
react chemically with the epoxy. This also suggests that even though the reflected XRD pattern is a common tool to
determine the structure of nanocomposites, the reflected XRD pattern by itself was not quite accurate and may provide
false information.

A typical micrograph of a clay-epoxy nanocomposite is shown in Figure 4. Figures 4a, 4b and 4c shows the TEM
images of 2.5wt%I30E-epoxy, 5wt%C30B-epoxy and 2.5wt%CNA-epoxy nanocomposites respectively. TEM images of
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2.5wt%I30E-epoxy and 5wt%C30B-epoxy materials exhibit a number of parallel organoclay layers. It was calculated
that the average layer distance was between 6.1 – 11.1 nm and 10.7 – 11.5 nm and a minimum layer distance of 2.5 nm
and 3.5 nm for I30E-epoxy and C30B-epoxy respectively.

This indicates that these materials possess a mixed structure of exfoliated and intercalated structures, where exfoliation
is at best partial. In contrast, based on the 2.5wt%CNA-epoxy nanocomposite image, the organoclay layers are not
separated, but form bulk areas in the epoxy and built a conventional composite material. It is clear, once again, that
natural clays do not swell with the epoxy.

Figure 4(a). TEM image of 2.5wt%I30E-epoxy
nanocomposite

Figure 4(b). TEM image of 2.5wt%C30B-epoxy
nanocomposite

100 nm 200 nm
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Figure 4(c). TEM image of 2.5wt%CNA-epoxy composite.
4. Conclusions

MMT-epoxy materials were successfully synthesized by in-situ polymerisation. Six MMT-epoxy systems were produced
from two organoclays, namely I30E and C30B, and an unmodified clay, namely CAN; and two different clay loadings;
2.5wt% and 5wt% for each system. It is well established that reflected XRD and DSC analysis are popular tools to study
the clay-epoxy materials. However, this study shows that the reflected XRD patterns of the organoclay – epoxy and
unmodified – epoxy exhibit similar results. More over, the DSC analysis of MMT-curing agent-DGEBA samples
demonstrated one peak for all samples. In contrast the transmitted XRD patterns of the organoclay – epoxy and
unmodified – epoxy exhibit different results as well as the DSC analysis of MMT-DGEBA samples exhibits different
patterns between the organo clay – epoxy and unmodified – epoxy materials. In conclusion, the transmitted XRD and
DSC analysis of clay-epoxy mixture are also important to determine the property of the materials. The TEM observation
is not the only tool to determine the structure because the intercalation structure may not be distinguished clearly with
the micro composite structure.
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