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ABSTRACT

Image representation via machine learning is an approach to quantitatively represent histopathological images 
of head and neck tumors for future applications of artificial intelligence-assisted pathological diagnosis systems. 
Objective: This study compares image representations produced by a pre-trained convolutional neural network 
(VGG16) to those produced by a vision transformer (ViT-L/14) in terms of the classification performance of head 
and neck tumors. Methods: Whole-slide images of five oral tumor categories (n = 319 cases) were analyzed. 
Image patches were created from manually annotated regions at 4096, 2048, and 1024 pixels and rescaled to 256 
pixels. Image representations were classified by logistic regression or multiclass Support Vector Machines for 
binary or multiclass classifications, respectively. Results: VGG16 with 1024 pixels performed best for benign 
and malignant salivary gland tumors (BSGT and MSGT) (F1 = 0.703 and 0.803). VGG16 outperformed ViT for 
BSGT and MSGT with all magnification levels. However, ViT outperformed VGG16 for maxillofacial bone tumors 
(MBTs), odontogenic cysts (OCs), and odontogenic tumors (OTs) with all magnification levels (F1 = 0.780; 0.874; 
0.751). Conclusion: Being more texture-biased, VGG16 performs better in representing BSGT and MSGT in high 
magnification while the more shape-biased ViT-L/14 performs better in representing MBT, OC, and OT.
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INTRODUCTION

A histopathological analysis is crucial for tumor 
diagnosis and studying oral disease pathophysiology. 
This process involves staining tissue specimens with 
Hematoxylin & Eosin and carefully examining them 
under a microscope. However, this observation tends 
to be time-consuming and subjective except for highly 
experienced pathologists. Therefore, developing a 
diagnostic method to help accelerate diagnosis and 
objectively classify tumor cases is necessary, especially 
in the presence of a limited number of pathologists. 
To develop such a method, it is important to make 
histopathological images comparable to one another by 
quantifying the features within the image. Producing 
image representations using machine learning helps 
to quantitatively represent histopathological images of 
head and neck tumors, which can be valuable for future 

applications of artificial intelligence(AI)-assisted 
histopathological diagnosis systems.1,2

Technological advancements in digital images 
have facilitated the objective quantif ication of 
histopathological images beyond image recognition.3–6 
Encoding the features of histopathological images 
with image representation produced by a bilinear 
convolut ional neu ral  network (B-CN N) has 
successfully captured the histological characteristics 
of many types of cancer.2 The bilinear operation takes 
the spatial invariance of histopathological images 
into account. It means that the B-CNN considers 
the relative locations of cellular components in 
accordance with other components instead of their 
relative positions within the images.7,8 However, CNN 
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exhibits a strong texture bias, which means the network 
extracts information about an image from its local 
texture more than it does from its global shape.9 CNN 
may perform well in representing histopathological 
images that comprise multiple object repetitions or 
contain spatially stationary statistics, which can be 
described as texture. This may not be the case when 
histopathological images exhibit elements of contours 
that describe the form of an object or elements that 
have non-stationary statistics, which can be described 
as shapes. In such instances, a vision transformer 
(ViT) may perform better. ViT has been demonstrated 
to be able to capture long-distance information and is 
less sensitive to local texture information than CNN. 
In other words, it exhibits a stronger shape bias than 
CNN.10  Considering the variety of tumor types and the 
surrounding tissue of the tumor in the head and neck 
area, ViT provides a promising possibility to create a 
better image representation for the histopathological 
image of the oral region.

Therefore, this study aims to compare image 
representation produced by pre-trained B-CNN 
to that produced by pre-trained ViT with different 
magnification levels. We chose VGG16 to represent 
B-CNN due to its previous success as a histopathological 
image classifier in several studies11–13 and ViT-L/14 to 
represent ViT due to its recent success as a large-
scale image encoder.14 The results presented in this 
study provide the insight required to move forward 
with the development of AI-assisted histopathological 
diagnostic systems.

METHODS

This study was approved by the Research Ethical 
Review Committee of Tokyo Medical and Dental 
University Hospital (Reference Number: D2019-087). 
We collected histopathology slides of the following 
five oral tumor categories: benign salivary gland tumor 
(BSGT), malignant salivary gland tumor (MSGT), 
maxillofacial bone tumor (MBT), odontogenic cyst 
(OC), and odontogenic tumor (OT) from the Pathology 
Division of TMDU Hospital (n = 319 cases). The cases 
included in these categories were the most common 
cases that we encountered from 2001 to 2021 to ensure 
the quality of the tissue staining and the final image 
(Table 1).

Image preprocessing
Histopathology slides were scanned at 40× magnification 
using a NanoZoomer S210 Digital slide scanner, 
(C13239-01, Hamamatsu Photonics, Hamamatsu, 
Japan) to create whole-slide images (WSIs). We then 
chose and annotated the regions of interest (ROIs) that 
represent the area of the tumor, excluding the normal 
tissue and areas containing artifacts (e.g., torn or folded 
tissue). Strictly from the ROIs, square image patches 
of 4096, 2048, and 1024 pixels (905, 453, and 226 
µm) were extracted in a random orientation to ensure 

Table 1. Cases included in the analysis throughout this study.

Category Diagnosis Number 
of cases

Benign_
salivary_gland_
tumor

Pleomorphic_adenoma 16
Myoepithelioma 12
Basal_cell_adenoma 10
Warthin_tumour 11

Malignant_
salivary_gland_
tumor

Mucoepidermoid_
carcinoma

10

Adenoid_cystic_
carcinoma

10

Basal_cell_
adenocarcinoma

10

Carcinoma_ex_
pleomorphic_adenoma

10

Salivary_duct_
carcinoma

15

Maxillofacial_
bone_tumor

Osteosarcoma 12
Ossifying_fibroma 15
Fibrous_dysplasia 13
Cemento_osseous_
dysplasia

12

Odontogenic_
cyst

Radicular_cyst 19
Inflammatory_
collateral_cyst

11

Dentigerous_cyst 21
Odontogenic_keratocyst 14
Calcifying_
odontogenic_cyst

11

Orthokeratinized_
odontogenic_cyst

11

Odontogenic_
tumor

Ameloblastoma 25
Adenomatoid_
odontogenic_tumor

10

Ameloblastic_fibroma 10
Odontogenic_fibroma 11
Odontogenic_myxoma_
myxofibroma

10

Cemento_ossifying_
fibroma

10

rotational invariance. Image patch size represents the 
magnification level of the WSI: a smaller image means 
a higher magnification level. All image patches were 
resized into 256 pixels.

Supervised learning
The image representation was calculated using VGG16 
block4_conv3 layer and ViT-L/14 (Figure 1). These 
networks were trained to recognize and predict the 
classification of images before their usage in our 
study: VGG16 was pre-trained on 1.2 million images 
from ImageNet in Tensorflow15 and ViT-L/14 was pre-
trained on 400 million image-text pairs in PyTorch.14 
For calculations with ViT-L/14, the image patches were 
further resized to 336 pixels. To calculate the image 
representation, image patches were automatically 
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broken down into pixels. Each pixel was passed through 
the layers of the network, which contain pre-defined 
weights and act as filters to extract the features from 
the simple ones (such as dots and lines) to the more 
complex ones (such as squares and circles). By going 
through these layers, the original image patches 
were transformed into sets of feature values that we 
refer to as image representation.16 From the image 
representation, models for multiclass classification 
were created using multiclass Support Vector Machines 
(SVM). All image data were divided into training and 
test sets in a 3:1 ratio. The performance of each category 
was assessed using precision, recall, and the F1 score 
at the case level.

Precision = True Positive/(True Positive + False 
Positive)
Recall = True Positive/(True Positive + False Negative)
F1 score = 2x (Precision x Recall)/(Precision + Recall)
The F1 score represents the balance between precision 
and recall. Therefore, the higher the F1 score, the more 
distinguishable one category is from the others.17 By 
comparing the F1 scores of images represented by 
VGG16 and ViT-L/14, we were able to conclude, which 
network performs better for the representation of each 
tumor category.

RESULTS

Our supervised learning models divide the image 
representations into the original five categories 
(Figure 2). MSGT has been shown to be the most 
distinguishable by VGG16, especially for 1024-pixel 
and 2048-pixel images (Figures 2A and 2B), while 
BSGT is hardly distinguishable from MSGT, especially 
for 2048-pixel images (167 images are correctly 
classified into BSGT and 115 images are classified 
into MSGT) (Figure 2B). Generally, OT is hardly 
distinguishable from MBT when using VGG16 (Figures 
2A–2C). On the other hand, BSGT is shown to be 
indistinguishable from MSGT by ViT-L/14 (Figures 
2D–2F). From the calculated F1 score, the highest 
performance of VGG16 in representing BSGT and 
MSGT is achieved with 1024-pixel images (F1 = 
0.703 and 0.803, respectively). The lowest F1 scores of 
VGG16 for BSGT and MSGT (F1 = 0.565 and 0.696) 

Figure 1.  Product ion of a h istopathology image 
representation.

are higher than those of ViT-L/14 for both categories 
with all magnification levels. The highest F1 scores of 
VGG16 for MBTs, OCs, and OTs are achieved with 
2048 pixels (F1 = 0.749; 0.855, and 0.666). However, 
these scores are lower than those of ViT-L/14 for all 
three categories with all magnification levels. The 
highest F1 score of ViT-L/14 for MBT is 0.780; that 
for OC is 0.87, and that for OT is 0.751. We found that 
the performances of VGG16 and ViT-L/14 may differ 
according to the characteristics of each tumor category 
(Table 2).

The scores in bold font represent the best F1 scores for 
each magnification level in the category. The scores 
in bold font with asterisks (*) represent the best F1 
score across all magnification levels in the category 
(BSGT: benign salivary gland tumor; MSGT: malignant 
salivary gland tumor; MBT: maxillofacial bone tumor; 
OC: odontogenic cyst; OT: odontogenic tumor).

DISCUSSION

Our study reports the performance of machine learning 
models in representing the most diverse category of 
head and neck tumors to date, including salivary gland 
tumors, OTs, and OCs, at the same time. However, in 
computational pathology, most supervised learning 
models have been developed using conventional 
methods, including feature extraction, data training, 
testing, and the prediction of image classification. 
Sakamoto et al. reported that fine-tuning VGG16 with 
image patches of odontogenic keratocysts, radicular 
cysts, and stroma successfully produced a model to 
predict odontogenic keratocysts or other OCs with 

Figure 2. Confusion matrices of supervised learning models. 
The numbers in the matrix represent the number of images 
classified in each category. (A) Image representation from 
1024-pixel image patches generated by VGG16. (B) Image 
representation from 2048-pixel image patches generated by 
VGG16. (C) Image representation from 4096-pixel image 
patches generated by VGG16. (D) Image representation from 
1024-pixel image patches generated by ViT-L/14. (E) Image 
representation from 2048-pixel image patches generated by 
ViT-L/14. (F) Image representation from 4096-pixel image 
patches generated by ViT-L/14.
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an AUC of 0.997.11 A study by Liu et al. employed 
a similar method by fine-tuning VGG16 with image 
data augmentation, image denoising, and sharpening 
of breast cancer histopathology images to predict 
benign or malignant breast cancer cases, successfully 
achieving 98.89% accuracy.12 Although this method 
guarantees high-accuracy predictions between limited 
classes, much data is required to train and test the 
network.

Head and neck tumors, especially those in the oral 
region, are not always common. With a small amount 
of data, generating image representations with a pre-
trained network as we did in our study reduces the 
possibility of overfittingg.2,16 This approach is termed 
“few-shot learning” or, more specifically, “few-shot 
image classification.” We used pre-trained networks 
to automatize feature extraction, then incorporated 
a machine learning algorithm (SVM) to learn the 
association between the pre-defined image features 
and the tumor category. Once the image representations 
are generated, they can be correlated to any biological 
and clinical parameters.6,16 The image representation 
has been used to objectively analyze histopathological 
images for purposes other than diagnosis. Xu et al. 
reported how image representation generated by CNN 
helps pathologists discover patterns in colon cancer 
and brain tumors with biological insights.18 Another 
study by Komura et al. demonstrated that image 
representation is useful for histological profiling and 
subtyping and correlates morphological features with 
genomic mutations with examples of more than 30 
types of cancer.2

Our results demonstrated that pre-trained networks can 
create objective and comparable oral histopathological 

Table 2. The performances of VGG16 and ViT-L/14 for five tumor categories at different magnification levels.

VGG16
1024 px 2048 px 4096 px

Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score
BSGT 0.829 0.610 0.703* 0.791 0.439 0.565 0.662 0.522 0.584
MSGT 0.798 0.809 0.803* 0.699 0.767 0.731 0.666 0.729 0.696
MBT 0.628 0.725 0.673 0.680 0.834 0.749 0.642 0.665 0.653
OC 0.742 0.789 0.765 0.815 0.900 0.855 0.805 0.879 0.840
OT 0.604 0.605 0.604 0.683 0.650 0.666 0.627 0.604 0.615

ViT-L/14
1024 px 2048 px 4096 px

Precision Recall F1_score Precision Recall F1_score Precision Recall F1_score
BSGT 0.765 0.205 0.324 0.709 0.326 0.447 0.636 0.408 0.497
MSGT 0.487 0.879 0.627 0.539 0.833 0.655 0.442 0.673 0.534
MBT 0.785 0.775 0.780* 0.799 0.755 0.776 0.715 0.784 0.748
OC 0.814 0.770 0.791 0.855 0.846 0.850 0.853 0.898 0.875*
OT 0.769 0.734 0.751* 0.738 0.742 0.740 0.803 0.669 0.730

image representation; however, the ability to do so 
depends on the properties of the network itself. There 
are some differences that are worth noticing between 
the networks that we used in our study. The input size 
for VGG16 is 256 pixels, while that for ViT-L/14 is 
336 pixels. Moreover, VGG16 was pre-trained with 
approximately 1.2 million images, whereas ViT-L/14 
was pre-trained with 400 million image-text pairs. 
These differences may account for the difference in 
performance that was presented in the previous section.

Our dataset includes histopathological images with a 
wide range of visual characteristics. Solid tumors in 
BSGT and MSGT, such as myoepithelioma, warthin 
tumors, and basal cell adenocarcinoma, exhibit 
texture-like features of tumor cells that are arranged 
in a repetitive manner (Figure 3). MBT and OT include 
tumors in the jawbone, such as fibrous dysplasia, 
cemento-osseous dysplasia, and cemento-ossifying 
fibroma. These categories may include mineralized 
tissues that exhibit defined contours. OCs, while rarely 
including mineralized tissue, are differentiated from 
other types of head and neck tumors and from one 
another mostly by the lining epithelium, which forms 
a contour-like feature along the image, separating the 
lumen area and the connective tissue (Figure 4). The 
higher F1 scores showed by VGG16 in representing 
BSGT and MSGT may be associated with its high 
texture bias. This hypothesis is supported by the fact 
that the image representation produced by VGG16 of 
these categories that are correctly classified exhibit 
texture-like features (Figure 5). In their study, Geirhos 
et al. reported that after testing CNN’s recognition 
accuracy for different image styles in comparison to 
humans, both can recognize images with their original 
texture and shape equally well. However, when the 
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Figure 3. Images correctly classified by VGG16. Solid 
tumors generally show texture-like features from two 
categories: (A) BSGT and (B) MSGT.

Figure 4. Images correctly classified by ViT-L/14. Images 
exhibiting definitive contour-like features separating 
different types of tissue. (A) MBT, (B) OC, and (C) OT. Scale 
bars: 100 µm for 1024-pixel images, 200 µm for 2048-pixel 
images, 400 µm for 4096-pixel image.

object was outlined to create a more definitive shape, 
CNN’s recognition accuracy decreased (9). With 
higher magnification, the texture-like features of 
BSGT and MSGT become more homogenous, which 
may result in a better representation with VGG16. On 
the other hand, ViT-L/14 showed higher performance 
for MBT, OT, and OC, which may be associated with 
ViT’s larger receptive field, resulting in its stronger 
shape bias, which is more similar to the human visual 
ability than that of CNN. This hypothesis is supported 
by the fact that the image representation produced by 
ViT-L/14 of these categories that are correctly classified 
do not exhibit texture-like features but rather exhibit 
more definitive contours (Figure 5). Our report shows 
that VGG16 generally classifies images based on the 
texture-like features seen throughout the image, while 
ViT-L/14 gives importance to definitive contours, 
which is in line with the results of the study by Naseer 
et al., with a similar analysis done by Geirhos et al., 
providing evidence that ViT gives higher importance to 
global shape than CNN, which exploits local textures to 
recognize an image.10 More studies are needed to find 

the middle ground between these two types of bias for 
further use in computational pathology.

Despite the novelty of our findings, our study focuses 
on the machine-learning representation of an image 
patch, which makes its findings highly dependent on 
the manually selected ROIs. Furthermore, our dataset 
only included tumor cases that are commonly found 
in Japan. A multicenter cohort study including rare 
cases and cases with rare subtypes in the dataset will 
better ensure the usefulness of the model in the clinical 
setting.
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CONCLUSION

VGG16, a CNN known to have a high texture bias, 
performs better in representing BSGT and MSGT in 
high magnification, while ViT-L/14, which has the 
ability to encode contextual cues and has stronger 
shape bias than VGG16, outperforms it in representing 
MBT, OC, and OT.
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