
Makara Journal of Technology Makara Journal of Technology

Volume 26 Issue 1 Article 5

4-30-2022

Design and Implementation of I2C Bus Protocol on Master and Design and Implementation of I2C Bus Protocol on Master and

Slave Data Transfer Based on FPGA Slave Data Transfer Based on FPGA

Mohamad Khairi Ishak
School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Penang
14300, Malaysia, khairiishak@usm.my

Meenal Pradeep Kumar
School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Penang
14300, Malaysia

Follow this and additional works at: https://scholarhub.ui.ac.id/mjt

 Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Ishak, Mohamad Khairi and Kumar, Meenal Pradeep (2022) "Design and Implementation of I2C Bus
Protocol on Master and Slave Data Transfer Based on FPGA," Makara Journal of Technology: Vol. 26: Iss.
1, Article 5.
DOI: 10.7454/mst.v26i1.1416
Available at: https://scholarhub.ui.ac.id/mjt/vol26/iss1/5

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been
accepted for inclusion in Makara Journal of Technology by an authorized editor of UI Scholars Hub.

https://scholarhub.ui.ac.id/mjt
https://scholarhub.ui.ac.id/mjt/vol26
https://scholarhub.ui.ac.id/mjt/vol26/iss1
https://scholarhub.ui.ac.id/mjt/vol26/iss1/5
https://scholarhub.ui.ac.id/mjt?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol26%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol26%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol26%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarhub.ui.ac.id/mjt/vol26/iss1/5?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol26%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Makara J. Technol. 26/1 (2022), 30−36

doi: 10.7454/mst.v26i1.1416

 April 2022 | Vol. 26 | No. 1 30

Design and Implementation of I2C Bus Protocol on Master and Slave Data

Transfer Based on FPGA

Mohamad Khairi Ishak* and Meenal Pradeep Kumar

School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Penang 14300,

Malaysia

*E-mail: khairiishak@usm.my

Abstract

This paper presents the design of the inter-integrated circuit (I2C) protocol with different types of features, such as combined

messages, addressing modes, different data patterns and start addresses, clock frequencies, and types of modes between the

field-programmable gate array (FPGA) and test card. Moreover, all these features can be randomized and run for long hours.

The FPGA and the test card respectively act as master and slave. The design architecture comprises master and slave. The

master generates a START condition, in which the serial data will transact between high to low levels and the serial clock

will remain high. Then, the master also generates the STOP condition. Additionally, a few types of messaging modes, such

as PIO read, PIO write, PIO write–read, and PIO read–write, are available. By contrast, the master also transfers and receives

data to or from slave devices by using different addressing modes. The implemented addressing modes are 7 and 10 bits.

This paper also focuses on randomizing the sent data byte and the start address. Particularly, data sending, reading, and

writing operations are conducted and stimulated by capturing the signal using a logic analyzer. The signal is then examined

and compared with the actual I2C protocol format. A stress test is performed by randomizing all the features and running for

long hours (4 h). The stress test aims to stress the IP and ensure the health of IP.

Abstrak

Rancangan dan Implementasi Protokol Bus I2C pada Pemindahan Data Master dan Slave berdasarkan FPGA.

Artikel ini menyajikan rancangan protokol inter-integrated circuit (I2C) dengan berbagai jenis fitur, seperti pesan

gabungan, mode pengalamatan, pola data dan alamat awal yang berbeda, frekuensi clock, dan jenis mode antara field-

programmable gate array (FPGA) dan kartu tes. Selain itu, semua fitur ini dapat diacak dan dijalankan selama berjam-

jam. FPGA dan kartu tes masing-masing bertindak sebagai master dan slave. Arsitektur desain terdiri dari master dan

slave. Master menghasilkan kondisi START, di mana data serial akan ditransaksikan antara tingkat tinggi ke rendah dan

serial clock akan tetap tinggi. Kemudian, master juga membangkitkan kondisi STOP. Sebagai tambahan, tersedia

beberapa jenis mode pesan, seperti PIO read, PIO write, PIO write–read, dan PIO read–write. Sebaliknya, master juga

mentransfer dan menerima data ke atau dari perangkat slave dengan menggunakan mode pengalamatan yang berbeda.

Mode pengalamatan yang diimplementasikan adalah 7 dan 10 bit. Artikel ini juga berfokus pada pengacakan bita data

yang dikirim dan alamat awal. Khususnya, operasi pengiriman, pembacaan, dan penulisan data dilakukan dan dirangsang

dengan menangkap sinyal menggunakan penganalisis logika. Sinyal tersebut kemudian diuji dan dibandingkan dengan

format protokol I2C yang sebenarnya. Uji ketahanan dilakukan dengan mengacak semua fitur dan berjalan selama berjam-

jam (4 jam). Uji ketahanan bertujuan untuk menekankan IP dan memastikan kesehatan IP.

Keywords: field-programmable gate array (FPGA), master, PIO read, PIO write, serial clock line (SCL), serial data

line (SDA), Slave

1. Introduction

The Inter-Integrated Circuit (I2C) bus protocol was

developed by Philips Electronics [1]. I2C allows

communication between integrated circuits, and its

communication is obtained from different manufacturers

[2]. I2C is a synchronous bus protocol, which enables the

fast device to communicate without any data loss.

Moreover, I2C is commonly used for signal processing

devices [3].

I2C protocol is a two-wire serial interface or even a

bidirectional wire interface. These bidirectional wires

comprise serial data (SDA) and serial clock (SCL). First,

the SDA line is where data pass through when sent from

one device to another [3]. Second, the SCL line is

Design and Implementation of I2C Bus Protocol on Master

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

31

generated by the master device and controlled during data

sending and under the read operation. Both wires carry

messages between the master and slave, which is

connected in the bus [4]. This master or slave is the

device that is connected on the bus. A unique address

represents each device on the bus, and this device can act

as a transmitter or a receiver [5].

I2C IP can run at various speeds, covering three speed

categories: standard, fast mode, and high speed. The

standard speed operates at 100 kHz. Meanwhile, the fast

mode speed operates at 400 kHz, and the high speed

operates at 3.4 MHz [6].

The implementation of the I2C bus protocol with

different features, such as combined message, different

types of mode transfer and speed, addressing mode,

different patterns of data transmission, and number of

bytes, is investigated in this paper. This protocol is also

the best bus for control application, wherein devices may

be added or removed from the system.

I2C is crucial for the future technological purpose of chip

integration. Therefore, noise and signal integrity issues

should be eliminated [1]. Such elimination is important

because I2C validation has many drawbacks considering

signal integrity and noise [3, 7]. Therefore, validation

through a test card, which will replicate the actual device,

will reduce the signal integrity and noise issues.

Moreover, cost and complexity issues remain major

issues within the customers. The I2C device is one of the

best solutions to reduce cost and complexity. Compared

with other IPs, such as RS232, RS485, and QEP, I2C

comprises only two signals, namely SDA and SCL [5, 8,

9]. By contrast, I2C IP is the most suitable when many

devices are connected on the bus because it can reduce

the cost and scale down the complexity of the circuit. On

the other hand, the chip select line is commonly used in

many other IPs, such as SPI IP. This chip select aims to

choose one or more than one set of an integrated circuit

which is connected on the same bus. Component and

complexity will increase when the chip select line is used

[4, 10, 11]; cost will also rise. This issue is eliminated by

adding an addressing feature that can support 7- and 10-

bit addressing features and a combined message that can

support read–write and write–read transactions.

The most common problem is when the IP only runs with

the implemented selected feature without any stress test.

The health of an IP is crucial [12−14]. Therefore, the

stress test is important to examine the healthiness of the

IP and investigate the performance of data transfer and

packet loss. Stress tests can be performed via

randomization among all features that are implemented

and run for long hours [2, 15−17].

Thus, the contribution of this project is to improve the

health of the IP by running randomization with all the

features that have been implemented for a long period.

Furthermore, noise and signal integrity issues are

currently addressed through the use of a test card that can

replicate the actual device. Finally, the complexity and

production cost will be reduced.

2. Design of I2C Bus Controller

Methodology. The software in this work comprises an

Register-Transfer Level (RTL) code, which is used to

code the flow of I2C as master and slave. Xilinx software

tool is used to flash the FPGA. This research used the

following: some hardware, such as Altera FPGA and

protocol analyzer, to capture the SDA and SCL signals;

test card, which acts as a slave to the I2C controller that

acts as master. The flow chart of I2C acts as a master and

the test card acts as a slave, as respectively shown in Figs.

1 and 2.

i-programming flow of test card as a master. Figure 4

shows that IC_Slave _Disable is set to 1 by disabling the

slave and enabling IC_MASTER_MODE to set I2C as

Master. Configuring IC_10bitADDR_MASTER enables

10- or 7-bit addressing modes. The slave address must be

configured in the I2C Target Address Register in the

IC_TAR bit after configuring the Master and addressing

mode. This configured address is the target address for

any master transaction.

The next step is to program the I2C Clock SCL High

Count and Low Count Register according to the

configuration speed, such as standard, fast, or high. This

register must be set before the occurrence of any I2C bus

operation. This step is crucial to ensure that the I2C bus

has suitable IO timing and avoids signal integrity issues.

Thereafter, the RX_FIFO and TX_FIFO threshold levels

are set. Both levels control the number of entries for

transmission and receiving. The valid range is from 0 to

255. When a value of 0 is set, the threshold is set for 1

entry; by contrast, when 255 is set, the threshold will be

256 entries.

After all the above configurations, I2C is enabled by

configuring IC_Enable. Writing to the I2C_Data_CMD

register is performed after the I2C is enabled. The

function of the CMD bit is to control the performance of

a read or write operation. This bit does not regulate the

direction of I2C (whether master or slave) but only

controls the direction when it acts as a master. This bit

differentiates the write and read commands when a

certain command arrives in the TX FIFO. A read

command should be written for every byte that is to be

received for the I2C to continue acknowledging reading;

otherwise, I2C will stop acknowledging. Data to be

transmitted will be configured on the DATA bit of the

I2C_DATA_CMD register.

Ishak, et al.

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

32

Figure 1. Flow Chart of I2C as Master

Figure 2. Flow Chart of Test Card as a Slave

Design and Implementation of I2C Bus Protocol on Master

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

33

ii-programming flow of test card act as slave. The test

card is set as the slave as shown in Figure 2. First, the

address where the I2C slave will respond is programmed.

Then, IC_Slave _Disable is set to 0 by enabling the slave

and disabling the master mode. IC_MASTER_MODE is

configured as zero to disable the master mode.

IC_10bitADDR_MASTER is configured to enable 10- or

7-bit addressing modes. If this bit is programmed to zero,

then functioning is realized at 7-bit addressing mode.

Next, the IC_MAX_SPEED_MODE is set to configure

the speed of the I2C Bus. The IC_MAX_SPEED_MODE

comprises two bits. When this mode is programmed to

zero, the I2C bus will be functioning at standard speed,

one as fast speed, and two as high speed. An effective

finetuning of HCNT and LCNT is also necessary to

configure the speed. An interrupt mask is written to

unmask the required interrupt after configuring the slave

and addressing modes. All the programmed

configurations at the slave, such as the addressing mode

and speed, should be similar to those programmed at the

master mode. The I2C is then enabled by writing to

IC_Enable to enable the I2C Bus.

The test card will start acting as the slave when the I2C

Bus is enabled. The test card, which acts as the slave, will

read the interrupt request by interpreting

IC_RAW_INTR_STAT bits 5 and 6. If the status shows

that the bus is RX Full Interrupt, then the slave will read

the IC_DATA_CMD to retrieve the byte. Otherwise, the

slave will read the status of the slave activity by

interpreting IC_STATUS bit 6. This slave activity

determines if the slave is active or inactive. The slave will

read the interrupt register back when the slave activity is

not equal to zero and will disable the slave by writing

zero to IC_Enable if the slave activity is one.

Design implementation. The hardware used is FPGA and

test card. FPGA will act as a master, while the test card will

act as a slave. SDA and SCL lines are respectively

connected from the FPGA and the test card. Figure 3

shows the FPGA and test card hardware connection.

When the mode is programmed as PIO write, the FPGA

will act as the master, while the test card will act as a

slave. FPGA will then program a bit to indicate a write

transaction. When the mode is programmed as PIO read,

the FPGA will remain as the master, but the FPGA will

be programmed as a read transaction. The Verilog code

for the I2C controller, which had been developed and

assigned with SDA and SCL, is transformed into a bit

file. This bit file is then flashed onto the FPGA using the

Xilinx software tool and Xilinx hardware. The Xilinx

hardware tool is connected to the FPGA to flash the

Verilog code that is being developed. The test card is

programmed as a slave using the USB Blaster after the

Verilog code has been programmed. The transaction of

the I2C protocol will run, and the signal is captured

Figure 3. FPGA and Test Card Connection

Figure 4. Logic Analyzer Software

using a logic analyzer. The signal is discussed by

comparing it with the actual protocol format. Figure 4

shows the logic analyzer software that captures the signal

and data packet.

3. Simulation Results

The protocol analyzer is used to capture signals which are

compared with the actual protocol format and then

discussed. Eleven different colors of protocol analyzer

are available to describe each operation, such as start,

data, and slave address. Figure 5 describes each color

with its condition.

PIO write and PIO read. For the PIO write mode

transfer, the I2C controller is the master while the test

card is the slave. The I2C controller, which acts as the

master, will begin by sending a START transaction. The

start pattern, which is known as the slave address, is then

generated by the master. The slave sends an Address

ACK bit, and a write bit is generated after the master

receives this bit. Afterward, the data are sent to the slave.

Data ACK bit, which is generated by the slave, will be

available after every data. The data NACK bit is sent by

the slave after completing the data transfer. The master

will generate a STOP condition after receiving the Data

NACK bit. Figure 6 shows the PIO write transaction.

For the PIO read transaction, a read bit is generated by

the master after receiving the Address ACK bit sent by

the slave. The data are then sent to the slave. The ACK

bit, which is generated by the slave, will be available after

every data. Data NACK bit is sent by the slave after

completing the data transfer. The master will generate a

STOP condition after receiving the data NACK bit.

Figure 7 shows the PIO read transaction.

Ishak, et al.

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

34

Combined message. PIO write–read transaction is a

combined message mode. The first part of the message is

the write, followed by a restart bit and then a read

transaction. Meanwhile, PIO read–write transaction is

also a combined message mode. The first part is the read

transaction followed by the write transaction. Figures 8

and 9 respectively show the PIO write–read and the PIO

read–write transaction signals.

Addressing mode. Two types of addressing modes are

available: 7- and 10-bit addressing modes. Figures 10 and

11 respectively show the 7- and 10-bit addressing mode

signals.

Data byte. Data byte randomizes from 0 to 240 bytes.

Figure 12 shows the randomization of the number of

bytes of 8, 16, 32, 64, and 240 data bytes.

Start address. The start address, which is also known as

the slave address, has been randomized. Figure 13 shows

the randomization of the slave address at 0 × 79, 0 × 51,

and 0 × 7f.

Figure 16: Different types of start addresses: (a) −0 × 79

slave address, (b) −0 × 51 slave address, (c) −0 × 7f slave

address.

Figure 5. Color Coding for each condition

Figure 6. PIO Write Transaction

Figure 7. PIO Read Transaction

Figure 8. PIO Write–read Transaction

Figure 9. PIO Read–write Transaction

Figure 10. 7-bit Addressing Mode

Figure 11. 10-bit Addressing Mode

Figure 12. Different Numbers of Bytes: (a) −8 Data Byte,

(b) −16 Data Byte, (c) −32 Data Byte, (d) −64

Data Bye, (e) −240 Data Bytes

Pattern. Data patterns are also randomized from

increment, gray code, and Fibonacci pattern. The three

patterns are randomized during the long-hour regression

test in Section G.

Long-hour regression. An automation regression was

run for long hours. The minimum run is one. This

automation regression will randomize the mode of

transfer by choosing the write, read, write–read, or read–

write transactions. This regression will also randomize

between 7- and 10-bit addressing modes. Moreover,

Design and Implementation of I2C Bus Protocol on Master

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

35

the data pattern will perform randomization by selecting

between gray code, increment, or Fibonacci. Meanwhile,

this automation will send data with different types of

speed, such as standard, fast, or high. The slave address,

which is also known as the start address, as well as the

data byte, will also be randomized throughout the

regression process. Table 1 shows a summary of the

randomization parameters.

Figure 13. Different Types of Start Addresses: (a) −0 × 79

Slave Address, (b) −0 × 51 Slave Address, (c) −0

× 7f Slave Address

Table 1. Randomization Parameters

Randomization

Configuration
Parameter

Mode Transfer
Write Transaction

Read Transaction

Combined Message
Write–Read Transaction

Read–Write Transaction

Addressing Mode
7-bit addressing mode

10-bit addressing mode

Clock Frequency

Standard Speed

Fast Speed

High Speed

Start Address
Randomization

according to the

addressing mode

Number of Bytes 0–240 bytes

Pattern

Increment

Gray Code

Fibonacci

Table 2. Long-hour Regression Results

Long-hour

Regression
Test Result No of Cycles

1 h Pass 11,711

2 h Pass 23,376

3 h Pass 28,820

4 h Pass 44,464

Table 2 shows the summary of long-hour regression

results by randomizing all the parameters with the

number of cycles. Four hours long has been identified in

this work as sufficient time based on the randomized

parameters and computer performance. The test result

that will be displayed is either Pass or Fail. A Pass means

that the I2C bus had completed the I2C transaction. The

number of cycles refers to the number of I2C transactions

with different parameters. For example, cycle number 1,

which is known as the first transaction, indicates read

transaction with the following conditions: 7-bit

addressing mode, 100 bytes of data, slave address of 0 ×

51, standard speed, and increment data pattern. The

second transaction also indicates read transaction but

under the following conditions: 10-bit addressing mode,

20 data bytes, fast speed, and gray code data pattern.

4. Conclusions

This research proposed a methodology for the

implementation of the I2C bus protocol with different

types of features, such as combined message, addressing

mode, data pattern, number of data bytes, slave address,

and speed. This methodology is designed between the

Xilinx FPGA and the test card, which can act as the actual

device. All the implemented features can be randomized

and run for long hours.

The code that acts as the I2C slave and master, as well as

different features, such as addressing bits, modes, and

various slave addresses, have been developed in Verilog

code. This code is then run on FPGA (master) and test

card (slave). The protocol analyzer is used to capture

signals. The signals of all the respective features

implemented are compared with the actual protocol

format.

A stress test, known as the automation regression, is

conducted for the healthiness of the I2C IP. The

minimum run is 1 h. This regression test randomizes all

the features and is run for long hours. The stress test is

implemented to ensure the absence of packet loss

throughout the long-hour regression. The implementation

of this stress test can increase the coverage of the

implemented features and reduce the bug escape of I2C

IP.

References

Ishak, et al.

Makara J. Technol. 1 April 2022 | Vol. 26 | No. 1

36

[1] R.R.C., R.A. Kumar, Int. J. Sci. Eng. Res. 5/3 (2014)

130.

[2] The I2C Bus Specification, Philips Semiconductor,

2010.

[3] A. Anagha, M. Mathurakani, 2016 International

Conference on Communication and Signal

Processing (ICCSP), India, 2016, p.2124.

[4] R.K. Megalingam, J.M. Varghese, S.A. Anil, 2016

International Conference on VLSI Systems,

Architectures, Technology and Applications (VLSI-

SATA), 2016, p.1.

[5] I.G. Cristian, 2015 IEEE 21th international

Symposium/or Design and Technology in Electronic

Packaging (SIITME), Romania, 2015, p.131.

[6] J. Chhikara, R. Sinha, S. Kaila, 2015 IEEE

International Conference on Computational

Intelligence & Communication Technology, 2015,

p.235.

[7] V. Jan, Design of a digital I2C Slave IP Block, 2012.

[8] M.P. Kumar, Int. J. Innov. Res. Comput. Commun.

Eng. 2/3 (2013) 4.

[9] H. Kaneriya, S. Jagtap, Int. J. Recent Innov. Trends

Comput. Comm. 3/5 (2015) 4.

[10] S. Tripti, Int. J. Res. Appl. Sci. Technol. 2/12 (2014)

4.

[11] T.L.-del Río, G. Juarez-Gracia, L.N. Oliva-Moreno,

Res. Comput. Sci. 75 (2014) 31.

[12] N. Gupta, V. Gupta, Int. J. Innov. Res. Electr.

Electron. Instrum. Contr. Eng. 1/9 (2013) 4.

[13] B. Debasis, Design an Modeling of I2C Bus

Controller, 2011.

[14] I2C Bus, Tracii XL 2.0.

[15] A.S. Tadkal, P. Patil, Int. J. Electr. Electron.

Comouter Syst. 2/3 (2014).

[16] Xilinx Inc, Spartan-3E FPGA Family Data Sheet,

DS312 Product Specification, 2013.

[17] L. Bacciarelli, G. Lucia, S. Saponara, L. Fanucci, M.

Forliti, Res. Microelectron. Electr. (2006) 373.

	Design and Implementation of I2C Bus Protocol on Master and Slave Data Transfer Based on FPGA
	Recommended Citation

	Design and Implementation of I2C Bus Protocol on Master and Slave Data Transfer Based on FPGA

