Density Functional Theory (DFT) Study of a Binary Mixture of MBBA and PAA Liquid Crystal for THz Application

Mirtunjai Mishra
Department of Physics, School for Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh 226025, India

Narinder Kumar
Department of Physics, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India, narinder@uttaranchaluniversity.ac.in

Pawan Singh
Department of Physics, School for Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh 226025, India

B. S. Rawat
Department of Physics, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India

Reena Dhyani
Department of Physics, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India

See next page for additional authors

Recommended Citation

Mishra, Mirtunjai; Kumar, Narinder; Singh, Pawan; Rawat, B. S.; Dhyani, Reena; Singh, Devendra; and Kumar, Devesh (2022) "Density Functional Theory (DFT) Study of a Binary Mixture of MBBA and PAA Liquid Crystal for THz Application," *Makara Journal of Science*: Vol. 26: Iss. 4, Article 5.
DOI: 10.7454/mss.v26i4.1412
Available at: https://scholarhub.ui.ac.id/science/vol26/iss4/5

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub.
Density Functional Theory (DFT) Study of a Binary Mixture of MBBA and PAA
Liquid Crystal for THz Application

Authors
Mirtunjai Mishra, Narinder Kumar, Pawan Singh, B. S. Rawat, Reena Dhyani, Devendra Singh, and Devesh Kumar
Density Functional Theory (DFT) Study of a Binary Mixture of MBBA and PAA Liquid Crystal for THz Application

Mirtunjai Mishra1, Narinder Kumar2*, Pawan Singh1, B. S. Rawat2, Reena Dhyani2, Devendra Singh1, and Devesh Kumar3

1. Department of Physics, School for Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh 226025, India
2. Department of Physics, School of Applied & Life Sciences, Uttarakhand University, Dehradun, Uttarakhand-248007, India
3. Department of Physics, Siddharth University, Uttar Pradesh 227202, India

*E-mail: narinder@uttaranchaluniversity.ac.in

Received September 1, 2022 | Accepted November 29, 2022

Abstract

The present scenario expresses the electro-optical effect of a binary mixture of MBBA and PAA liquid crystal studied under the impact of the electric field in THz frequency. The binary mixture has a negative order parameter, negative birefringence, and a nematic phase stability under such an electric field. The refractive index remains constant at high THz frequency. The director angle is sensitive to THz frequency, contributing to the maximum fluctuation. The atomic contribution of a binary mixture is approximately equal to the molecular contribution. The binary mixture has a remarkably high bandgap. The C-H, O-C, C-N atom stretching, and wagging of alkyl chain contribute to the dipolar strength of the binary mixture.

Keywords: bandgap, binary mixture MBBA-PAA, DFT, electric field (THz), electro-optical effect

Introduction

The MBBA (N-(4-Methoxybenzylidene)-4-butyylaniline) liquid crystal (LC) was first synthesized by Hans Kelker in 1969 and expressed the nematic phase at room temperature. In the year 1970s, the MBBA LC was used for the first time by the United Kingdom for the liquid crystal display (LCD). The moisture enters the LCD and damages the alignment of LC under the influence of the electric field due to the hydrolysis problem. Therefore MBBA LC no longer expresses the alignment of molecules and also exhibits a negative dielectric anisotropy defined as $\Delta \varepsilon = \varepsilon_{11} - \varepsilon_{\perp}$. The amino linkage group (≡N) is responsible for the negative dielectric anisotropy. In 1973, Dr. George Gray from the University of Hull synthesized 4-Cyano-4'-pentylbiphenyl (5CB) LC the first time; 5CB LC was also commercialized by the UK industry. The 5CB LC was moisture free and also hada positive dielectric anisotropy. The 5CB was highly polar and perfectly maintained the alignment of molecules; however, MBBA demonstrates poor alignment of all the molecules. Therefore, 5CB was the superior alternative of MBBA LC. The MBBA LC was aligned along the surface under the impact of the electric field. The nematic phase is sensitive to the surface due to substantial induced disorder. The PAA (para-azoxyanisole) is a rod-like nematic LC, which also has a negative dielectric anisotropy [1]. Shibaev et al. [2] reported that the MBBA is a rod-like nematic phase LC, that is remarkably sensitive to the environment; therefore, MBBA can be used in environmental gas sensor applications. Lee et al. [3] investigated LED panels and found that PAA LC is remarkably sensitive to the tactile force magnitudes (express ripple propagation on screens); however, MBBA is insensitive to the tactile force magnitudes. Bouligand et al. [4-5] studied a mixture of MBBA and PAA which expresses the stable nematic phase. Diezat al. [6] revealed that the binary mixture of MBBA and PAA exhibits the broad range nematic phase with perfect alignment of molecules.

The PAA is less viscous compared with MBBA. The MBBA is sensitive to the low-frequency dependence characteristics and controlled by the molecular diffusion mechanism due to the proton spin-lattice relaxation in the nematic phase. However, the PAA exhibits high frequency dependence characteristics through the order fluctuation mechanism; thus, the binary mixture is chosen for the current work. The MBBA and PAA LC are predominant; the molecular interaction through...
wagging of the alkyl chain and alkyl chain is temperature dependent (chain length increased with the reduction in temperature) [7]. The nematic phase of PAA LC maintains stability at substantially high Larmor frequency due to fluctuations of the director angle [8]. The order parameter of MBBA LC approached 0.6; but the binary mixture of MBBA and PAA reduced the order parameter to 0.54. The MBBA LC molecules are useful for the microwave heating effects, which are widely employed in the enzymatic reactions, acceleration of organic compounds, and polymerization [9]. The PAA LC behaves as a stimuli-responsive sensor, as mentioned by Sulayman [10]. PAA and MBBA are combined in the current study to function as sensing application devices. Takehisa et al. reported that the doping of MBBA LC material enhances its the porosity responsible for the sensing and filtering applications [11]. The PAA LC has stimuli-responsive transition as well as optical anisotropic properties [12]. Mihai et al. revealed that the MBBA enhances the birefringence of mixtures thus modifying the birefringence in the present work [13].

The electro-optical properties in the present work were calculated under the influence of terahertz (THz) frequency range with a binary mixture of MBBA and PAA LC. The MBBA and PAA LC are suitable for the low and high-frequency ranges, respectively; however, the binary mixture of PAA LC maintains the low to high THz frequency. The electric field in THz frequency was applied to the binary mixture and the optical properties, which are suitable for the different THz application devices were calculated.

Computational Methodology

The binary mixture of MBBA and PAA LC molecules are optimized by the NWChem Software [14] using density functional theory (DFT) method B3LYP [15-16] and M062X [17] with 6−31G** basis set [18]. After the simulation of binary mixture, the electric field (a.u.) is applied to the binary mixture along the molecular axis (x-axis) and perpendicular (y-axis). The range of the applied electric field is 0.0000 atomic unit (a.u.) to 0.1500 a.u with an interval of 0.0020 a.u, where 1 a.u.=5.14 × 10⁹ V/m or 1 a.u.= 6.57968 × 10¹² Hz [19]. The molecular polarizability of a binary mixture is calculated after the application of an electric field. Along the x-axis, molecular polarizability of the binary mixture is considered as extraordinary molecular polarizability (α_e), and along the y-axis is considered as ordinary molecular polarizability (α_o). With the help of α_e and α_o, the refractive index, birefringence, director angle, and order parameter of the binary mixture are calculated on the basis of the formula provided below [20-21]. Where β, α, and μ equivalent to the components of the first-order hyperpolarizability (b), polarizability (α) and dipole moment (c), average polarizability (d, e, f) respectively,

\[
\alpha = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz}) \tag{a}
\]

\[
\beta = [(\beta_{xx} + \beta_{xy} + \beta_{xz})^2 + (\beta_{yy} + \beta_{yx} + \beta_{yz})^2 + (\beta_{zz} + \beta_{zx} + \beta_{zy})^2]^{1/2} \tag{b}
\]

\[
\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2} \tag{c}
\]

\[
\Delta\alpha = 2^{-1/2}[(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2]^{1/2} \tag{d}
\]

\[
\Delta\tilde{\alpha} = \alpha_e - \alpha_o \tag{e}
\]

\[
\Delta\gamma = S\Delta\alpha \tag{f}
\]

Order Parameter (S) [11]:

\[
S = \frac{\alpha_e - \alpha_o}{\alpha_e + \alpha_o} \tag{1}
\]

Birefringence (Δn) [20]:

\[
\Delta n = \frac{(\alpha_e - \alpha_o)}{6.3631} \left[R^3 - \left(\frac{2\alpha_o + \alpha_e}{20.244} \right) \right]^{-1} \tag{2}
\]

where, R is the radius of the binary mixture.
Magic angle (θ) [1]:
\[θ = \cos^{-1}\left(\frac{2S + 1}{3}\right) \]

(3)

Refractive index (n) [1,20]:
\[α = \frac{2α_o + α_e}{3} \quad γ_e = α + \frac{2(α_e - α_o)}{3S} \quad γ_o = α - \frac{(α_e - α_o)}{3S} \]

(3.1) (3.2) (3.3)

\[n_e = \frac{7}{2\sqrt{10}} + \frac{(2\sqrt{10}/5)πNα}{1 - 4πNα/3} + \frac{(4\sqrt{10}/15)πNS(γ_e - γ_o)}{1 - 4πNα/3} \]

(3.4)

\[n_o = \frac{7}{2\sqrt{10}} + \frac{(2\sqrt{10}/5)πNα}{1 - 4πNα/3} - \frac{(4\sqrt{10}/15)πNS(γ_e - γ_o)}{1 - 4πNα/3} \]

(3.5)

\[n = \frac{7}{2\sqrt{10}} + \frac{(2\sqrt{10}/5)πNα}{1 - 4πNα/3} \]

(4)

where N=300 is the number of binary mixture.

Results and Discussion

The DFT method B3LYP is predominant in the atomic contribution of the binary mixture; however, the M062X method is predominant in the molecular contribution of the binary mixture. The present work indicates the atomic and molecular contributions of the binary mixture. Under the impact of THz frequency, the molecular contribution of the binary mixture is predominant for all the optical characteristics. The optimized geometry of MBBA and PAA LC is shown in Figure 1.

Order parameter. The order parameter is calculated by DFT methodology using Equation 1, as shown in Figure 2. Kobinata et al. [22] reported that the order parameter of MBBA is 0.60. However, in the present work, the order parameter decreases to 0.54 because of the order fluctuation of PAA LC. The DFT methods B3LYP and M062X expressed the same nature of characteristics; therefore, atomic contribution can be predicted similarly to the molecular contribution with the different values. Both methodologies predicted nematic phase stability under the impact of the electric field in THz frequency. Chandrasekhar et al. [23] found that the experimental and theoretical order parameter of PAA LC are 0.55 and 0.43 respectively. Therefore experimental and theoretical pieces of evidence are predicted to support the molecular and atomic contributions, respectively. The binary mixture also expresses the re-entrant nematic phase at a high frequency. Through the M062X method, the maximum
and minimum order parameters are 0.54, and −0.23, respectively; through the B3LYP method, the maximum and minimum order parameter are 0.44, and −0.13, respectively. The order parameter characteristics are used to express the nematic to the isotropic phase transition. The binary mixture is sensitive to the electric field which leads to the continuous fluctuation of the order parameter. Above 0.14 a.u. electric field, the binary mixture is finally converted to the isotropic phase.

Birefringence. The birefringence is calculated by DFT methodology using Equation 2, as shown in Figure 3. Shibaev et al. [2] reported that the birefringence of MBBA LC is 0.30; however, the birefringence reduction of a binary mixture in the present work 0.25 due to the conversion of this mixture to the dense property. The optical property birefringence is predominant in the molecular contribution. The nematic phase stability is also observed in the birefringence characteristics. Pan et al. [24] reported that the birefringence of 5CB LC in THz frequency is equal to 0.20; however, the birefringence of a binary mixture is 0.25, in the present work. The binary mixture maintained low birefringence at a high THz frequency range. The re-entrant behavior of molecules is also observed in the birefringence characteristics. Through the DFT method M062X, the maximum and minimum birefringence are 0.25, and −0.11, respectively. Meanwhile, the B3LYP method expresses maximum and minimum birefringence are 0.17, and −0.07, respectively. Leenhouts et al. [25] reported the existence of MBBA LC birefringence between 0.20 and 0.22, while the birefringence enhanced due to director fluctuation of PAA LC in the present work.

Ref refractive index. The refractive index is calculated by DFT methodology using Equation 4, as shown in Figure 5. The THz spectroscopy is a powerful tool for describing the phase transition and dichroism of liquid crystals. Nishizawa et al. [26] found that the MBBA LC expresses strong dichroism in the THz frequency, which corresponds to the IR absorption caused by C–H atom stretching. Roger Chang [27] revealed that the average refractive

Ref refractive index. The refractive index is calculated by DFT methodology using Equation 4, as shown in Figure 5. The THz spectroscopy is a powerful tool for describing the phase transition and dichroism of liquid crystals. Nishizawa et al. [26] found that the MBBA LC expresses strong dichroism in the THz frequency, which corresponds to the IR absorption caused by C–H atom stretching. Roger Chang [27] revealed that the average refractive

Figure 3. Birefringence Calculated by DFT Methodology under the Impact of the Electric Field in THz Frequency

Figure 4. Director Angle Calculated by DFT Methodology under the Impact of the Electric Field in THz Frequency

Figure 5. Refractive Index Calculated by DFT Methodology under the Impact of the Electric Field in THz Frequency
index of MBBA LC exists between 1.76 to 1.54, while the average refractive index of a binary mixture is 1.57 in the present work. For the refractive index characteristics, the atomic and molecular contributions were found to be equal but with different values. The nematic phase stability was observed at low THz frequency range in the refractive index characteristics. The refractive index remains constant at the higher frequency, which is suitable for the THz applications. Kumar et al. [28] indicated that the DFT (B3LYP) methodology is most ideal for organic compounds. The current work also reveals that organic compounds (liquid crystal) are used for the theoretical prediction.

Bandgap and dipolar strength. The highest occupied molecular orbital-lowest unoccupied molecular orbital bandgap of a binary mixture is 5.19 eV, as shown in Figure 6. The dipole moment of a binary mixture is 7.61 Debye. The binary mixture has suitable dipolar strength, as shown in Figure 7. The C-H, O-C, C-N atom stretching, and wagging of alkyl chain contribute to the dipolar strength of the binary mixture as shown in Figure 7. Vilfan et al. [7] reported that the wagging of alkyl chain mostly contributes to the intermolecular interaction of a binary mixture rather than the translation motion of the molecules; the present work theoretical prediction also supports the experimental evidence. The molecular spectroscopy of binary mixture MBBA and PAA is given in Table 1. The table indicates that scissoring of hydrogen atom of MBBA and PAA contributed maximum dipolar strength at the frequency of 1236 THz.

<table>
<thead>
<tr>
<th>Frequency (THz)</th>
<th>Mode of Vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>562</td>
<td>O-C Scissoring (in plane bending) in PAA</td>
</tr>
<tr>
<td>858</td>
<td>H twisting (out of plane bending) in PAA</td>
</tr>
<tr>
<td>992</td>
<td>O-C stretching in PAA</td>
</tr>
<tr>
<td>1181</td>
<td>H scissoring in MBBA</td>
</tr>
<tr>
<td>1236</td>
<td>H scissoring in MBBA or PAA</td>
</tr>
<tr>
<td>1639</td>
<td>C-C stretching in PAA</td>
</tr>
<tr>
<td>1523</td>
<td>In plane rocking in PAA</td>
</tr>
<tr>
<td>3031</td>
<td>Asymmetric stretching in PAA and MBBA</td>
</tr>
</tbody>
</table>

Conclusion

In the present scenario, the binary mixture expresses an electro-optical effect under the impact of the electric field in THz frequency. The nematic phase is stable under THz frequency and expresses re-entrant nematic phase transition. The binary mixture reveals positive and negative order parameters and birefringence. The binary mixture behaves as an insulator due to a large bandgap. The C-H, O-C, C-N atom stretching, and wagging of alkyl chain contribute to the dipolar strength of the binary mixture. The director angle sensitive to the THz frequency thereby inducing maximum fluctuation. The scissoring of hydrogen atoms of MBBA and PAA liquid crystal contributed maximum dipolar strength at the frequency of 1236 THz. The refractive index remains constant in THz frequency therefore, this index is suitable for different applications in the THz frequency.

Acknowledgment

We are very grateful to the Center for Development of Advanced Computing (CDAC) for providing computational help for this work. We are also very thankful to Dr. Anakuthil Anoop Ayyappan (IIT KGP) for providing computational assistance and to Dr. Pawan Singh and Dr. Khem B. Thapa for the scientific discussion.

References

