
Makara Journal of Technology Makara Journal of Technology

Volume 23 Issue 2 Article 4

8-2-2019

Use of the “DNAChecker” Algorithm for Improving Bioinformatics Use of the “DNAChecker” Algorithm for Improving Bioinformatics

Research Research

Nausheen Bhat
Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences,
Jakarta Timur 13210, Indonesia

Ezra Bernadus Wijaya
Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences,
Jakarta Timur 13210, Indonesia

Arli Aditya Parikesit
Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences,
Jakarta Timur 13210, Indonesia, arli.parikesit@i3l.ac.id

Follow this and additional works at: https://scholarhub.ui.ac.id/mjt

 Part of the Chemical Engineering Commons, Civil Engineering Commons, Computer Engineering

Commons, Electrical and Electronics Commons, Metallurgy Commons, Ocean Engineering Commons, and

the Structural Engineering Commons

Recommended Citation Recommended Citation
Bhat, Nausheen; Wijaya, Ezra Bernadus; and Parikesit, Arli Aditya (2019) "Use of the “DNAChecker”
Algorithm for Improving Bioinformatics Research," Makara Journal of Technology: Vol. 23: Iss. 2, Article 4.
DOI: 10.7454/mst.v23i2.3488
Available at: https://scholarhub.ui.ac.id/mjt/vol23/iss2/4

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been
accepted for inclusion in Makara Journal of Technology by an authorized editor of UI Scholars Hub.

https://scholarhub.ui.ac.id/mjt
https://scholarhub.ui.ac.id/mjt/vol23
https://scholarhub.ui.ac.id/mjt/vol23/iss2
https://scholarhub.ui.ac.id/mjt/vol23/iss2/4
https://scholarhub.ui.ac.id/mjt?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/240?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/288?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarhub.ui.ac.id/mjt/vol23/iss2/4?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol23%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Makara J. Technol. 23/2 (2019), 72-77
doi: 10.7454/mst.v23i2.3488

 August 2019 | Vol. 23 | No. 2 72

Use of the “DNAChecker” Algorithm for Improving Bioinformatics Research

Nausheen Bhat1, Ezra Bernadus Wijaya1,2, and Arli Aditya Parikesit1*

1. Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences,
Jakarta Timur 13210, Indonesia

2. Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan

*e-mail: arli.parikesit@i3l.ac.id

Abstract

Basic Local Alignment Sequencing Tool (BLAST) is a bioinformatics tool used for analyzing nucleotide sequences
with regards to their similarity. BLAST can be found online on biological databases such as the National Center for
Biotechnology Information (NCBI) and other such repositories. The mechanism of BLAST allows the target sequence
to be compared with other sequences to find regions of local similarity, and thus, a comparability quotient that
determines the resemblance between the sequences is created. Due to the open-platform nature of the online databanks,
several sequences can be accepted with little to no interjections regarding the quality of sequence submitted. An
example of unclean nucleotide sequences can be based on the number of non-template nucleotides, denoted as “N,”
present within the sequence. Here we develop a self-established nucleotide sequence reading program known as
“DNAChecker,” which helps identify the quality of the target sequence and therefore proposes the effectiveness of the
BLAST result. DNAChecker is an inbuilt, program that runs on Python 3.4 and was implemented in the United States
Agency for International Development (USAID) project conducted in Indonesia International Institute for Life
Sciences. Although DNAChecker has proven to be useful, it has a lot of room for improvements, such as having a more
objectively accurate means of differentiating between good and bad sequences.

Abstrak

Penggunaan Algoritma “DNA Checker” untuk Pengembangan Riset Bioinformatika. Basic Sequence Alignment
Tool (BLAST) adalah aplikasi bioinformatika yang digunakan untuk menganalisis sekuens nukleotida sehubungan
dengan pensejajarannya. BLAST dapat ditemukan secara daring di database biologis seperti Pusat Nasional untuk
Informasi Bioteknologi (NCBI) dan repositori lainnya. Mekanisme BLAST memungkinkan sekuens target untuk
dibandingkan dengan sekuens lain untuk menemukan daerah kesamaan lokal, dan dengan demikian, dapat
menghasilkan perbandingan yang menentukan kemiripan antara sekuens. Karena sifat platform terbuka dari bank data
daring, beberapa urutan dapat diterima dengan sedikit atau tanpa interupsi terkait kualitas urutan yang disampaikan.
Contoh urutan nukleotida tidak baik dapat didasarkan pada jumlah nukleotida non-template, dilambangkan sebagai "N,"
yang hadir dalam urutan. Di sini kami mengembangkan program pembacaan urutan nukleotida yang dikenal sebagai
"DNAChecker," yang membantu mengidentifikasi kualitas urutan target dan karenanya meningkatkan keefektifan hasil
pencarian BLAST. DNAChecker adalah program inbuilt, yang berjalan pada Python 3.4 dan diimplementasikan di
proyek Badan Pembangunan Internasional Amerika Serikat (USAID) yang dilaksanakan di Institut Bioscientia
Internasional Indonesia. Meskipun DNAChecker terbukti bermanfaat, ia tetap seyogyanya ditingkatkan fiturnya, seperti
memiliki cara yang lebih akurat secara obyektif untuk membedakan urutan yang baik dan buruk.

Keywords: DNAChecker, Python, NCBI, BLAST, USAID

1. Introduction

DNA amplification is an essential process that
manipulates the DNA fragments of a sample such that a
sequence is produced. Sequence identification requires

the use of the Basic Local Alignment Sequencing Tool
(BLAST), which is a bioinformatics tool that allows
nucleotide sequence comparison via the alignment of a
target sequence against a nucleotide databank, where the
most similar sequences can be identified [1]. Although

DNAChecker Algorithm for Improving Bioinformatics Research

Makara J. Technol. 1 August 2019 Vol. 23 No. 2

73

the results of BLAST have a defined accuracy, it is not
certain how “clean” or precise the target sequence may
have been. During amplification, a common error
occurs where the lack of concentration of any nucleotide
is undetermined [2],[3], and consequently, the
corresponding region is either left empty or identified as
a non-template nucleotide, denoted simply as “N” [4].
These non-template nucleotides may be the reason for
variations between the expected and actual results from
BLAST. In many cases, where the BLAST result is
unknown, the presence of non-template nucleotides may
allow changes within the sequence that may cause a
disruption in the read sequence and consequently in the
overall research information [4],[5].

As experienced with the United States Agency for
International Development (USAID) project’s DNA
amplification, several non-template nucleotides were
present, which had to be manually dealt with, so that not
the whole sequence is read. Due to the advancements in
computational analysis for biological data, the Python
programing language can be implemented to script a
code that allows the sequence to be read prior to
BLAST analysis and determine the quality of the
sequence based on a uniform criterion [6], [7]. Several
computational algorithms for large-scale DNA analysis
have been implemented, but not for a specialized task as
explained in this research [8]–[10]. In various
nucleotide-reading computer-based programs, uncertain
nucleotides within a sequence are defined by the letter
“N.” The more the occurrences of “N” within a given
nucleotide sequence, the “uglier” the sequence. The
ideal sequence would be a chain consisting of the peak
sequence of one of the four nucleotides: guanine (G),
thymine (T), cytosine (C), or adenine (A).

The purpose of this study is to create a calculated
nucleotide sequence analyzer that can dictate accurate
approval measures in order to reduce the chances of
BLAST unclean nucleotide sequences and prevent
possible unsatisfactory results. The function of the
program, DNAChecker, designed by members of the
USAID project, is to analyze whole sequences and
eventually determine whether the sequence is clean
enough to proceed for the next step of sequence
identification, which is performed by BLAST.

2. Experimental

Material. DNAChecker was created using a Hewlett
Packard Pavilion laptop with the following specifications:
Intel® Core™ i7-4510U CPU @ 2.00 GHz 2.60 GHz,
RAM 12.0 GB, Windows 10 64-bit Operating System, ×
64-based processor.

The program used for creating DNAChecker was
Python 3.4, with additional plugins, such as Biopython,
to further upgrade the features of DNAChecker [6]. In

addition to the Python software, a DNA sequence
visualizing software, FinchTV, was used to make an
initial identification of the ABI (Applied Biosystem)
format chromatogram file (.ab1) into a more basic text
format (.txt), which only represents the nucleotides and
not the other measurable factors that FinchTV can
express, such as the nucleotide concentration and such
[11]. This was done to easily input the sequence into
DNAChecker, since accessing and reading text files is
easier, compared to ABI format files.

Data Management and Coding. Figure 1 shows the
interface of the DNA sequence visualizing software
FinchTV. As can be seen in the figure, there are peaks
that represent nucleotides with the highest
concentrations. With this, we can conclude that a certain
sequence will have the given nucleotide in order.
However, when there is a disruption in peak, such as
shown in the beginning, the software expresses it as an
“N.” This “N” nucleotide is the indicator of a good and
properly expressed and analyzed sequence. The fewer
“N” present within a sequence, the better the sequence.

Ideally, the sequence would have no non-template
nucleotide (N), just as it is present in the DNA. Finally,
after accessing the DNA sequence, we can copy the
information and paste it onto a text document-based
application, such as Notepad. Figure 2 is the
representation of the previously shown raw data files
that have been converted into text files and thus are
readable from a notepad application. This is an essential
step that allows the sequence to be read by the
DNAChecker program; if the ABI format were
employed, the reading, as well as the coding within the
Python program, would not be efficient from the
perspective of time and memory. It is also important to
notice the directory of this folder. Since the Python
program will read the files from this folder, it must be
kept in the specified directory that Python could load
into the PC’s RAM.

Figure 1. The Interface of the DNA Sequence Visualizing
Software, FinchTV

Bhat, et al.

Makara J. Technol. 1 August 2019 | Vol. 23 | No. 2

74

Figure 2 shows the target DNA sequence that is read as
a text file. The only information that is displayed in this
format is the nucleotide in sequence.

The import function allows other previously built
functions to be inserted into the DNAChecker program
so that its functions can be utilized. The “re” module or
the Regular Expression module is inputted within the
frame of the string operation and can be used to allow
the recognition of various possible strings patterns [12].
While the import os is the main function to direct
Python into a specific directory of choice, import Bio is
the function to import the Biopython module into the
main Python 3.4 software (Figure 3). Although, at this
point, there is no use of the Biopython module since
there are no functions that require any coding that the
Biopython module provides. However, for the further

development of this project, the Biopython module can
be applied to make use of the coding that Biopython can
provide.

As a part of managing biological data, it is necessary to
ensure that all files are readable and designed to be
uniformly adjusted. Therefore, the “file” call requires
the “open” coding as a well-read function, represented
by the “r” code. To uniformly present all accessible
data, the nucleotide pairs must be capitalized and the
spacing arrangements must be taken care of to avoid the
esthetically uneven data. For that, the coding
“file.upper” creates an uppercase default input, and as a
part of the Python built-in rule, “/n” represents the
largely gapped spaces, which are then replaced with“ ,”
to express that these spaces are to be replaced with
nothing in between and are thus equally spaced.

Figure 2. DNA Sequence Shown in a Text Document

Figure 3. The Inputted Coding for the whole DNAChecker Program

DNAChecker Algorithm for Improving Bioinformatics Research

Makara J. Technol. 1 August 2019 Vol. 23 No. 2

75

The “re.finditer” is a convenient tool to identify and
match string patterns that are read from the left to right,
and the “m” represents the group that holds the
information of the sequences, shown previously as
m.group(1) [13, 14]. The “re.finditer” function in this
case helps to identify four sequential “N”s in a
sequence, from where the reading for the sequence will
be tracked. To end the search of the sequence, the
function will have to find another group of four “N”s, as
shown in the coding above. The representation of four
“N”s is a helpful way to start the sequence from an ugly
point in the beginning and to read the rest of the neat
sequence until the next four “N”s. However, if the
occurrence of the four “N”s happens earlier than before
the necessary amount of sequence is recorded, an error
message will be shown, saying that the sequence needs
to be at least 500-base-pairs long, which will be set as a
minimum base pair count. If the sequence count is more
than 500, then the program can move onto the next step.

Finally, the next set of coding acts as a rule for the
quantitative measurement for the sequence, which will
decide the beauty of the extracted sequence. The code
summarizes the requirements to identify the number of
“N”s in the sequence and the total number of base pairs
in the sequence itself.

If the amount of “N”s per sequence reaches a certain
level, the sequence will be judged for its beauty. As
instructed to the program, if the number of “N”s per
sequence is less than 5%, then the sequence is deemed
BEAUTIFUL. If the sequence is between 5% and 20%,
the sequence is deemed FINE, whereas if the sequence
is between 21% and 39%, the sequence is considered
OKAY and reconsideration is needed on cleaning up the
nucleotides sequence by replacing the N base with the
best peaks shown on Finch TV. Finally, if the
percentage of “N”s is above 40% of the whole seThe
result of the input is the determined verdict of the DNA
sequence quality, ranging from beautiful to unreadable.
Figure 5 shows the result of a sample analyzed with the
DNAChecke; the total sequence length, total amount of
“N”s, and percentage of “N”s present within the
sequence are all displayed. Finally, the DNAChecker
determines the quality of the sequence. Figure 6
displays different raw data sequences with different
measurements based on the number of non-template
nucleotides present in the individual sequence. As
observed, the percentage of non-template nucleotides in
the first raw data is less than 5%, and therefore, the
sequence receives a BEAUTIFUL rating. However,
when the percentage of non-template nucleotides within
the sequence is above 5% and below 20%, the sequence
is deemed FINE. Finally, the last sequence shows that
the sequence of the Raw_12.txt file has multiple “N”s
before its minimum limit, i.e., 500 base pairs. The result
prints out as shown.

There are no computational means of measuring DNA
sequence quality, as DNA amplicons can only be treated
via wet laboratory methods. Hence, there is no
developed standard for determining how clean a
sequence should be before being processed for any
experiment.

Similarly, there is no standard for the percentage
measurements used in DNAChecker, but the brackets
are based on fine estimates of the number of non-
template nucleotides that occur within the middle
section of the sequence. The beginning and the ending
of the sequence tend to be very “noisy,” and therefore,
the sequence may not qualify as a good sample.
However, we utilize multiple N’s in the beginning and
the end of the sequence to provide the starting and
ending points for the program to read the sequence. This
creates a suitable measure of the significantly more
important and neater sequence, which is improved than
the earlier efforts [15-17].

DNAChecker has proven to be useful for the general
identification of clean sequences for BLAST. This
program can be applied in various projects that deal
with various sequences from organisms, since it acts as
an efficient tool to filter out the good sequences from
the bad ones while providing information based on the
sequence that can be used in the database for further
comparison. In a research grant, known as the USAID
grant, Indonesia International Institute for Life Sciences
(i3L) has been working on the development of the
microbial diversity of lands, as well as the identification
of biofuel-potent microbes [6-8]. DNAChecker can be
employed in the USAID project, as it can analyze the
identified sequences from the microbes and after
determining the cleanliness of the sequence, it can
provide a decent secondary proof of the accurate results
from BLAST, as well as improve the databases with
more information. In the research world, where
scientific measures for various processes, such as next-
generation sequencing and metagenomics, are carried
out on computers, DNAChecker holds the important
role of pre-analyzing such digital results that will help
in assuring the purity of the sequence.

DNAChecker is intended to be one of three different
programs, along with multiBLAST and GenBank
Checker. MultiBLAST, is the process of analyzing
several files together using BLAST to efficiently work
on multiple sequences and obtain data faster. Although
several multiBLAST codings are provided on the
internet [18], this project intends to integrate several
personal touches into creating a newer multiBLAST
coding, with the previous coding acting as a backbone.
GenBank Checker introduces another level of advanced
data collection, which improves on the next step of
multiBLAST, to identify the microorganism, along with
its details and especially its trusted publications.

Bhat, et al.

Makara J. Technol. 1 August 2019 | Vol. 23 | No. 2

76

Figure 5. The Result of the First Sequence Shown

Figure 6. The Results of Various Sequences from the

Initial Raw Data

GenBank Checker is intended to access the GenBank
accession number of the given sequence, which also
currently exists, using the Biopython module [6, 19].
However, GenBank Checker has the property to save
most of the necessary selected information into the
database, allowing the database to be significantly more
detailed.

Other than improvements through the development of
other programs, DNAChecker itself can be improved in
having a more detailed quantitative measurement, with
more levels of cleanliness. This program has the
potential to be scaled up for genome and proteome
annotation filtering methods that currently still use
simple scripting applications [20–22]. One shortcoming
that must be fixed is the identification of the N base
based on the highest peak that can be visualized from
Finch TV, and a coding that can efficiently allow such
facilities needs to be added.

3. Conclusion

Advancements in computational science for biological
data has allowed the creation of a simple program that
can be helpful in simply providing an additional
assurance for the accuracy of biological data. This
report also shines some light on the fact that there are no

significant criteria for uploading any quality of
sequences onto DNA databases. With the help of
DNAChecker, a basis can be adapted to ensure that only
sequences of high quality are uploaded onto the online
databanks. The use of DNAChecker is not only limited
to the USAID project since it can be used to analyze any
given sequence as long as the sequence can read the
four N’s chain as a beginning and ending, so that the
sequence can print out the intended results. Considering
the above, DNAChecker can offer a lot in the world of
research.

Acknowledgement

The author would like to thanks Institute of Research
and Community Empowerment, Indonesia International
Institute for Life Sciences, and I3L-USAID Project for
supporting this research. Thanks also go to Faried
Irmansyah with his team from I3L IT Department for
providing support and infrastructure. Lastly, thanks also
goes to Direktorat Riset dan Pengabdian Masyarakat,
Direktorat Jenderal Penguatan Riset dan Pengembangan
Kementerian Riset, Teknologi dan Pendidikan Tinggi
Republik Indonesia for providing Hibah Penelitian
Dasar DIKTI/LLDIKTI III 2019 No. 1/AKM/PNT/2019.
The author declares that there is no conflicting interest.

References

[1] M. Johnson, I. Zaretskaya, Y. Raytselis, Y.

Merezhuk, S. McGinnis, T.L. Madden, Nucleic
Acids Res. 36 (2008) W5-9.

[2] P. Rice, I. Longden, A. Bleasby, Trends Genet. 16
(2000) 276.

[3] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J.
Ostell, E.W. Sayers, Nucleic Acids Res. 37 (2009)
D26.

[4] B. Steipe, B. Schiller, A. Plückthun, S. Steinbacher,
J. Mol. Biol. 240 (1994) 188.

[5] E.H. Akand, K.M. Downard, Mol. Phylogenet.
Evol. 112 (2017) 209.

[6] P.J.A. Cock, T. Antao, J.T. Chang, B.A. Chapman,
C.J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F.
Kauff, B. Wilczynski, M.J.L. de Hoon,
Bioinformatics 25 (2009) 1422.

[7] B. Chapman, J. Chang, ACM SIGBIO Newsl. 20
(2000) 15.

[8] M.I. Khan, C. Sheel, Am. J. Bioinforma. 2 (2013)
15.

[9] D.P. M., R. Prabha, A. Rai, D.K. Arora, Am. J.
Bioinforma. 1 (2012) 10.

[10] R.M. Al-Khatib, R. Abdullah, N.A. Rashid, J.
Comput. Sci. 5 (2009) 680.

[11] K.N. Mishra, D.A. Aaggarwal, D.E. Abdelhadi,
D.P.C. Srivastava, Int. J. Comput. Appl. 3 (2010)
39.

[12] N. Tabuchi, E. Sumii, A. Yonezawa, Electron.
Notes Theor. Comput. Sci. 75 (2003) 95.

DNAChecker Algorithm for Improving Bioinformatics Research

Makara J. Technol. 1 August 2019 Vol. 23 No. 2

77

[13] J.C. Brown, J. Virol. Antivir. Res. 5 (2016) 1.
[14] B. Steele, J. Chandler, S. Reddy, in: Algorithms

Data Sci., Springer International Publishing, Cham,
2016, pp. 313–342.

[15] T. Cajka, L.A. Garay, I.R. Sitepu, K.L. Boundy-
Mills, O. Fiehn, J. Nat. Prod. 79 (2016) 2580.

[16] L.A. Garay, I.R. Sitepu, T. Cajka, O. Fiehn, E.
Cathcart, R.W. Fry, A. Kanti, A. Joko Nugroho,
S.A. Faulina, S. Stephanandra, J.B. German, K.L.
Boundy-Mills, J. Ind. Microbiol. Biotechnol. 44
(2017) 1.

[17] L.A. Garay, I.R. Sitepu, T. Cajka, I. Chandra, S.
Shi, T. Lin, J.B. German, O. Fiehn, K.L. Boundy-
Mills, J. Ind. Microbiol. Biotechnol. 43 (2016) 887.

[18] P.J.A. Cock, T. Antao, J.T. Chang, B.A. Chapman,
C.J.Cox, A. Dalke, I. Friedberg, T. Hamelryck, F.
Kauff, B.Wilczynski, M.J.L. de Hoon. Bioinf. 25
(2009) 1422.

[19] B. Chapman, Genome Informatics 299 (2003) 298.
[20] A.A. Parikesit, P.F. Stadler, S.J. Prohaska, Open

Ser. Informatics 4 (2012) 1.
[21] A.A. Parikesit, S. Prohaska, P. Stadler, N.

Biotechnol. 27 (2010) S44.
[22] A.A. Parikesit, P.F. Stadler, S.J. Prohaska, in: Ext.

Abstr. Ger. Conf. Bioinforma., 2011, pp. 9–11.

	Use of the “DNAChecker” Algorithm for Improving Bioinformatics Research
	Recommended Citation

	Use of the â•œDNACheckerâ•š Algorithm for Improving Bioinformatics Research

