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Abstract  

 
This paper discusses data fusion methods to combine the data from a rotary encoder and ultrasonic sensor. Both sensors are 

used in a micro-flow calibration system developed by the Research Center of Metrology LIPI. The methods studied are 

hierarchical data fusion and Kalman filtering. Three types of Kalman filters (KFs) are compared: the conventional Kalman 

filter and two adaptive Kalman filters. Moreover, a method to combine the uncertainty results from KF in hierarchical data 

fusion is proposed. The aim of this study is to find appropriate methods of data fusion that can be implemented in micro-

flow calibration systems. Data from two experiment setups are used to compare the methods. The result indicates that one of 

the methods (with little adjustment) is more appropriate than the other. 

 

Abstract  

 
Metode Penggabungan Data Berdasarkan Adaptive Kalman Filtering. Makalah ini membahas tentang metode fusi 

data antara rotary encoder dan sensor ultrasonik. Kedua sensor yang digunakan pada sistem aliran kalibrasi mikro yang 

dikembangkan oleh Pusat Penelitian Metrologi LIPI (RCM-LIPI). Metode yang dikaji dalam makalah ini adalah fusi data 

hierarkis dan Kalman Filter. Tiga jenis Kalman Filter dibandingkan dalam makalah ini, konvensional dan dua metode 

adaptif. Makalah ini juga mengusulkan metode untuk menggabungkan hasil ketidakpastian dari Kalman Filter dalam fusi 

data yang  hiearkis. Tujuannya adalah untuk menemukan metode yang tepat, serta dapat diimplementasikan untuk sistem 

aliran kalibrasi mikro. Data dari dua konfigurasi percobaan digunakan untuk membandingkan metode-metode tersebut. 

Hasilnya mengarah ke kesimpulan bahwa salah satu metode (dengan sedikit penyesuaian), lebih tepat daripada lainnya. 
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1. Introduction 
 

This paper discusses methods of data fusion to combine 

the data from rotary encoder and ultrasonic sensor. Both 

sensors are used in micro-flow calibration system 

developed by Research Center of Metrology LIPI (RCM-

LIPI). The system consists of a double (twin) metallic 

syringe. This double syringe is moved back and forward 

by a linear actuator, so the system generates constant flow 

rate. 

 

The linear actuator consists of a low-speed DC motor 

connected to a ball screw module. The rotary encoder is 

attached to a motor to measure its angular speed. 

Previously, RCM-LIPI had tried to develop a micro-flow 

calibration system using a single glass syringe and used 

only rotary encoder as displacement and velocity sensor; 

the result was not satisfactory [1]. 

 

Therefore, in this development, an ultrasonic sensor is 

added to improve measurement result. An ultrasonic 

sensor is attached to the other side of the double syringe, 

and it measures the position of stainless steel plane 

attached to the piston rod of syringe. The plane will 

dynamically move following the piston movement. 

 

Federico Castanedo briefly defined data fusion as 

“combination of multiple sources to obtain improved 

information; in this context, improved information means 

less expensive, higher quality, or more relevant 

information.” He classified available data fusion 

techniques into three nonexclusive categories: (i) data 

association, (ii) state estimation, and (iii) decision fusion. 

The most popular technique in state estimation is Kalman 

filtering [2]. In this study, a Kalman filter (KF) is used to 

fuse the data coming from a rotary encoder and an 

ultrasonic sensor. 
 

The conventional Kalman filter (CKF) is best for a linear 

system, while the extended Kalman Filter, an extension of 

the CKF, is used for non-linear situations. Another type of 

the filter that has gained much attention in recent years is 
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the unscented Kalman Filter, which uses a strategy of 

sampling points around the mean [2]. The system 

discussed in this paper is the linear movement of double 

piston, which is a linear system that can be handled by a 

KF. 
 

There are four architectures that can be used with a KF: 

centralized, decentralized, distributed, and hierarchical. 

Hierarchical is a combination of decentralized and 

distributed architectures [2]. In a centralized architecture, 

each sensor reports only its measurement to the fusion 

center, while hierarchical architecture runs its own filter 

and reports the state and uncertainty to the fusion center. 

Ivan Markovic and Ivan Petrovic conducted a comparative 

study on both architectures; they also proposed a solution 

for fusion of arbitrary filters, for example KF with particle 

filter, and presented a solution for the case of 

asynchronous data arrival [3]. R. Anitha et al. compared 

the following fusion algorithms: state fusion algorithm, 

measurement fusion algorithm, and gain fusion algorithm. 

State fusion algorithm is similar to hierarchical 

architecture, while measurement fusion is similar to 

centralized architecture. They concluded that state fusion 

algorithm outperforms the other two [4]. In this paper, a 

hierarchical architecture is used to combine measurements 

from rotary encoder and ultrasonic sensor. 
 

The heart of the KF is the Kalman gain, which weighs the 

information coming from observations and predictions 

and then determines which information will have the most 

effect. This gain is influenced by uncertainties from meas-

urements (R) and filtering process (Q). At the beginning 

of the KF algorithm development, the measurement and 

process noise are considered constant. But later on, these 

noises are commonly thought to be time-varying; there-

fore, the corresponding values are not constant but uncer-

tain. Many studies have been conducted to develop algo-

rithms that enable adaptation of Q and R. The kind of KF 

that uses an adaptation algorithm is called an adaptive 

Kalman filter (AKF) [5]-[9]. 
 

There are many adaptive Kalman filtering techniques; one 

of the popular techniques is the adaptive method based on 

innovation or residual sequences. Innovation means the 

difference between the predicted state and actual meas-

urement [6]-[9]. Under steady state condition, the innova-

tion-based algorithm can perform well, but under dynamic 

situations, state correction sequence is required [9]. Inno-

vation and state correction can be combined with another 

parameter used as a scale. The scale can be applied to 

adapt Q or R, and the sampling period is the parameter 

mostly used as a scale. Various AKF techniques also in-

volve the choice of designer to adapt Q and R, or adapt 

either and make the other fixed [5]-[9]. 
 

In this paper, a comparative study is conducted between 

CKF and an AKF method proposed by Adam Werries and 

Jhon M. Dolan (Werries-Dolan) [9] and another proposed 

by Wang Shaowei and Wang Shanming (Wang-Wang) 

[10]. 

 

To adapt Q, Adam Werries and Jhon M. Dolan 

proposed an AKF method based on state correction 

sequence, which is considered to be more appropriate 

than innovation sequence, while to adapt R, they used 

variance of measurement and then scaled by sampling 

period [9]. In this paper, some modifications are made 

to their method, because the calculation based on the 

method may produce a negative value of Q. The value 

of Q by definition should be positive semi-definite [11]. 
 

Wang-Wang proposed a single-dimensional AKF to 

estimate velocity based on measurement of incremental 

rotary encoder. To adapt the Q value, they proposed a 

method based on a virtual model. The model is based on 

innovation velocity, scale of sampling period, and some 

constants coefficient. The coefficient is determined by 

experience or experiments. Their method considers R to 

be constant, providing the encoder resolution and 

sampling period remain unchanged [10]. In this study, the 

method developed by Wang-Wang is used without 

modification, since it is considered to be appropriate. 
 

Here, both methods discussed above and CKF are applied 

to estimate the velocity from rotary encoder measurement, 

and the results are compared. Only CKF is used to 

estimate the position from ultrasonic sensor measurement. 

 

To determine the current predicted uncertainty of position 

estimation, the uncertainty result from rotary encoder 

filtering process is combined the with previous corrected 

uncertainty of ultrasonic sensor filtering process, following 

the uncertainty combination guide suggested in ISO GUM 

[12]. 

 

This paper is organized as follows. Chapter 2 discusses the 

mathematical model of the measurements and filtering 

model. Chapter 3 discusses the experiment. Chapter 4 

shows the simulation results, and Chapter 5 presents the 

conclusions. 
 

2. Formulation  
 

Rotary Encoder Measurement Model. Rotary encoder 

output is pulses that are related to the rotational position of 

the DC motor. These pulses cannot directly inform us of 

the angle position of the motor shaft; they only inform us 

of the motor shaft angle of rotation. To measure the 

rotational speed of the motor, one can take the derivative 

of pulses with respect to time, which is a frequency of the 

pulses. Because rotary encoder only informs us of the 

rotational displacement and not angle position, then this 

sensor is appropriate to measure rotational speed. 

 

One of methods to calculate the rotational speed of motor 

shaft based on rotary encoder pulses count is the method. 
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This method calculates the rotational speed of motor 

based on the number of pulses in constant time slice [10], 

which is formulated as follows: 
 

         ωk = mk mk-2/ l T                              (1) 

 

where T is the sampling period (s), mk is the number of 

pulses in sampling period k, l is the encoder resolution 

(pulses per revolution), and ωk is the rotational speed of 

motor (rot/s). 

 

Since the motor and ball screw are connected using a 

coupling, the rotational movement of the DC motor is 

related to the linear movement of the ball screw. To obtain 

the information regarding linear speed, we can combine 

the information of rotational speed of motor with 

information of ball screw lead, and the formulation is as 

follows: 
 

        νe,k=ωk⋅l                              (2) 

 

where  is the lead of ball screw (mm), and e,k is the 

linear speed indicated by rotary encoder at sampling peri-

od k (mm/s). 

 

Ultrasonic Sensor Measurement Model. Basically, an 

ultrasonic sensor measures the distance between itself and 

an object. The sensor transmitter transmits mechanical 

waves, and the sensor receiver receives the waves 

reflected from the object. The distance from the sensor 

to the object is proportional to time of flight of the 

waves. For the HCSR04 ultrasonic sensor, the time of 

flight is measured in microsecond, and the formulation 

to calculate the distance in cm is given by Eq. (3) as 

follows [13]: 
 

        𝑑𝑢,𝑘 =
𝑃𝑊𝑘

𝐶𝑢
⋅ 10                             (3) 

 

where 𝑃𝑊𝑘 is the pulse width from ultrasonic sensor 

(s), 𝐶𝑢 is a constant equal to 58 s/cm, and 𝑑𝑢,𝑘  is the 

distance of an object from the ultrasonic sensor (mm). 

 

Since the ultrasonic sensor is fixed in this system, the 

sensor is suitable for measuring the position of piston, 

taking the sensor fixed position as a reference. 

 

Fusion Architecture. A hierarchical architecture is used 

in this study. One KF will filter information coming from 

the rotary encoder, and the output will be the filtered value 

of linear speed with related uncertainty. Another KF will 

use that information and combine it with information from 

ultrasonic sensor to determine position. The architecture is 

described in the following Figure 1. 

 

KF Algorithm for Rotary Encoder. The rotary encoder 

is only used to measure linear speed; therefore, it is 

independent of the ultrasonic sensor measurement.  

 
Figure 1. Hierarchical Data Fusion 

 

However, the ultrasonic sensor depends on the rotary 

encoder. The predicted position is calculated by adding 

the previous filtered position to the product of the filtered 

velocity and sampling time. 

 

CKF Algorithm. Generally, the algorithm used for 

filtering measurement data from the sensor will follow 

discrete CKF algorithm. The algorithm is basically 

divided into two parts: the prediction (time update) and 

the correction (measurement update) as depicted in 

Algorithm 1. 

 

Algorithm 1 Algorithm for Discrete KF 

Prediction 

1 1p c
kkx x  

2 1 1  p c
k kkU U Q  

Correction 

3   p p
k kk kG U U R  

4    c p p
k k kk kx x G z x  

5  1 c p
k k kU G U  

 
where p

kx  denotes predicted state at sampling period k, p
kx  

denotes corrected state at sampling period k, c
kU  denotes 

predicted uncertainty at sampling period k, c
kU  denotes 

corrected uncertainty at sampling period k. 
kQ  denotes 

process uncertainty at sampling period k, 
kG  denotes 

Kalman gain at sampling period k, 
kR  denotes measure-

ment uncertainty at sampling period k, and kz  denotes 

measurement value at sampling period k,  

 

At the beginning of iteration (i = 1), the 𝑥0
𝑐  and 𝑈0

𝑐 need 

to be determined first. For CKF, the value of R and Q is 

constant. The uncertainty reported by velocity estimation 

will not be used for position estimation. This algorithm is 

applied to both rotary encoder and ultrasonic sensor. 
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This KF is a one-dimensional filter. The filter will only 

consider linear speed information. The output will be the 

state of linear speed and the related uncertainty. The KF 

algorithm is depicted in Algorithm 2 as follows: 

 

Algorithm 2 KF Algorithm for Rotary Encoder 

Prediction 

1 1  p c
kk  

2 , 1 1,


    p c
k kkU U Q  

Correction 

3  , ,
 

  p p
k kk kG U U R  

4  ,
    c p p

k k e kk kG  

5  1 c p
k k kU G U  

The formula to determine Q base on Wang-Wang is as 

follows [10]: 

 

       𝑄𝑤𝑤,𝑘
𝜈 =

𝜆2𝑇2(𝜈𝑒,𝑘
𝑐 −𝜈𝑒,𝑘−1

𝑐 )
2

1+𝛾(𝜈𝑒,𝑘
𝑐 )

2                                    (4) 

 

where  (s−1) and  (s2.mm−2) are constant. 

 

The formula to determine Q base on the Werries-Dolan 

method, with some modification to ensure Q is a positive 

value, as follows: 

 

       
 



     
2

, ,j ,j 1 1

1

1
N

c p c c
AJ k e e k k

j

Q U U
N

           (5) 

 

where N is the number of data points. 

 

For R, the formula is 

 

      𝑅𝐴𝐽,𝑘
𝜈 = 𝜎2 ⋅ 𝑇                            (6) 

 

where 2 is the variance of measurement data or square 

of standard deviation. 

 

KF Algorithm for Ultrasonic Sensor. Since the 

prediction of position is calculated based on the filtered 

velocity information encoder, and the uncertainty of the 

filtered velocity keeps updating. In this paper, that 

uncertainty is used as process uncertainty updating 

value. 

 

The following formulation is used to filter information 

coming from the ultrasonic sensor. Since the 

hierarchical architecture is used, then the KF for 

ultrasonic sensor is also one-dimensional, like that of 

the rotary encoder. The algorithm 3 will explain in 

detail as follows. 

Algorithm 3 KF Algorithm for Ultrasonic Sensor 

Prediction 

1  1 1   p c c
k kkd d T  

2 

2

, 1 , 1,
1

  


      
    

p
p c ck

d k kd k
k

d
U U U  

 

Correction 

3  , , d p p d
k kd k d kG U U R  

4  ,  c p d p
k k u kk kd d G d d  

5  , ,1 c d p
d k k d kU G U  

 

The uncertainty will be adapted from the previous 

uncertainty in combination with the uncertainty reported 

from encoder filtering process. Since the speed and 

position have different units, following ISO GUM [12], 

the uncertainty of speed is multiplied with sensitivity 

coefficient. Therefore, the formula of sensitivity 

coefficient is 

 

       
𝜕𝑑𝑘

𝑝

𝜕𝜈𝑘−1
= 𝑇                               (7) 

 

 

3. Experiment Setup 
 

The experiment was conducted in two ways as depicted in 

Figure 2. First, the piston was moved from one end to 

another and then stopped. Second, the piston was moved 

forward and then backward, so that it will stop 

approximately at start position. Field-programmable gate 

array (FPGA) was used to control the piston movement 

based on information from encoder pulse, since the 

encoder is considered to be more accurate than the 

ultrasonic sensor. 

 

 
 

Figure 2. Experiment Setup  
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In this study, the FPGA used was DE0-Nano from 

Terrasic. To control the DC motor, FPGA sends digital 

signal to the motor driver made by Depok Instrument. The 

motor itself is low rpm motor driver from Hiang Hseng. 

At 6 volts, the motor has 10 rpm. The motor driver linear 

actuator, which has 1 mm lead, was made by HIWIN [14]. 

The rotary encoder attached to the motor was from 

Autonics and has a resolution of 360 pulses per revolution 

[15]. The ultrasonic sensor was HCSR04, which has an 

accuracy of 3 mm [13]. Two pistons of 20 mL stainless 

steel syringe from KD Scientific were used. The rest of 

the mechanical system that connects all the items 

mentioned before was manufactured by RCM-LIPI. 

 

The FPGA was programmed using Quartus II software 

from Terasic, and the programming language was the very 

high speed hardware description language and block 

diagram file (BDF). Fortunately Quartus II can obtain the 

data from BDF module using signal tap method; therefore, 

the encoder and ultrasonic sensor data can be captured. A 

tool command language program was made to capture the 

data from signal tap, create a server, and then send it to 

another program via TCP/IP communication. Finally, 

Visual Basic for Application (VBA) program was made in 

a macro-enabled excel file to capture and process the data 

from server. The sampling time used by VBA to capture 

data is 1 second. 

 

To analyze the measurement result, root mean square error 

is used, and the mathematical equation is shown in 

equation (8). Wang-Wang and Werries-Dolan AKF 

methods are compared with the CKF result. The CKF was 

chosen as reference since there are no reference 

instrument that can be used in this experiment to validate 

both speed and position of piston. 

 

       𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑟𝑒𝑓𝑓 − 𝑥)

2𝑛
𝑖=1                            (8) 

 

Here, n is the number of data, and 𝑥𝑟𝑒𝑓𝑓  is reference 

value 

 

4. Results and Discussion 

 
Experiment 1 

Figure 3 shows data from rotary encoder measurement 

for the first experiment. 

 

Table 1 shows RMSE for Wang-Wang and Werries-

Dolan methods relative to the CKF for the first 

experiment with encoder. 

 

For the CKF, an initial value of R0 = 0.1 was chosen in 

this study, since the distance between lead was 0.1 mm. 

Therefore, the uncertainty of measurement of encoder 

should fall between this number. For Q0 = 0.000005 and 

for P0, the value was the same with R0. As we can see, 

the filtering result of CKF was smooth, but it was not 

too sensitive to changes. As illustrated in Figure 3(b), 

when the speed was zero at the end of data series (the 

piston had stopped), CKF still indicated the piston was 

moving (the speed was not zero). Moreover, at the 

beginning of data series, the CKF result was not close to 

the measurement data. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Experiment 1 Results of (a) Encoder Measurement 

Data, (b) CKF Method, (c) Wang-Wang AKF 

Method, (d) Modified Werries-Dolan AKF Method 

 
Table 1. RMSEs of First Experiment with Encoder 

Instrument 
Method 

Wang-Wang Werries-Dolan 

Encoder 0.022 0.025 
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For the AKF method proposed by Wang and Wang,  = 

10 and  = 100.000 were chosen; these values are 

different from those Wang-Wang used in their paper 

[10]. The initial values of R0, Q0, and P0 were the same 

with those of the CKF. As we can see, the result was as 

smooth as that of the CKF, and also at the beginning of 

the data series, the result was not close to the 

measurement data. At the end of data series, when the 

piston stopped, the result shows that the speed was zero, 

which is better than the CKF result. 

 

For the AKF method proposed by Werries and Dolan 

subjected to a little modification, the same initial values 

used for the CKF was chosen. As we can see, the result 

had many ripples, although the ripples were not as large 

as those of the original measurement data. Moreover, at 

the first data series, the filter result was close to the 

measurement data. This also occurred at the end of data 

series, when the piston had stopped. This means this 

type of AKF adapts quickly to changes in situations. 

 

From Table 1, it can be seen that the RMSEs for Wang-

Wang and Werries-Dolan results relative to the CKF are 

almost similar, although the RMSE of the Wang-Wang 

is smaller. 

 

Next, we explore the results of ultrasonic sensor 

reading. Figure 4 shows the results of measurement data 

and the three different types of KF. 

 

Table 2 shows the RMSE for Wang-Wang and Werries-

Dolan methods relative to the CKF for the first experi-

ment with ultrasonic sensor. 

 

As we can see from Figure 4, the ultrasonic sensor pro-

duced noisy data. The initial values of R0, Q0, P0, and X0 

for all three type of KF were the same: 3, 0.000001, 3, and 

117, respectively. The R0 value was derived from the ac-

curacy of HCSR04 [12], which was the same with P0. The 

value of X0 was taken from a stable measurement from 

ultrasonic sensor when the piston had stopped. Figure 4 

also shows that the CKF and AKF proposed by Werries-

Dolan presented smoother results compared to the AKF 

proposed by Wang-Wang. From Table 2, it can be seen 

that error from Wang-Wang result relative to the CKF was 

slightly higher than that of Werries-Dolan. 

 

Experiment 2 

The second experiment was conducted with the piston 

moving back and forward so that it stopped at original 

position. The following graphs are the results of meas-

urement data and applied KF methods. 

Table 3 shows the RMSEs for Wang-Wang and Werries-

Dolan methods relative to the CKF for the second experi-

ment with encoder. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Experiment 1 Results of (a) Ultrasonic Sensor 

Measure-Ment Data, (b) CKF Method, (c) Wang-

Wang AKF Method, and (d) Modified Werries-

Dolan AKF Method 

 

 
Table 2. RMSEs of First Experiment with Ultrasonic 

Sensor 

Instrument 
Method 

Wang-Wang Werries-Dolan 

Ultrasonic 

sensor 
0.72 0.54 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Experiment 2 Result of (a) Encoder Measurement 

Data, (b) CKF Method, (c) Wang-Wang AKF 

Method, (d) Modified Werries-Dolan AKF Method 

 

 
Table 3. RMSEs of Second Experiment with Encoder 

Instrument 
Method 

Wang-Wang Werries-Dolan 

Encoder 0.0001 0.0012 

 

As we can see from Figure 5, the speed from the second 

experiment was lower than the results of the first experi-

ment. Although the same voltage was applied to the DC 

motor driver, the driver might have malfunctioned, and 

thus, a reduced current was supplied to the DC motor. 

The CKF and AKF proposed by Wang-Wang showed the 

smooth results at beginning of data series, but the CKF 

was not as sensitive as the other two KFs when there was 

change of piston movement, i.e., when the piston stopped 

or changed direction. At first, the AKF proposed by Wer-

ries-Dolan had more ripples compared to that proposed by 

Wang-Wang. However, after the piston changed direction, 

they both presented almost the same smooth result as the 

CKF. The ripples in the Werries-Dolan AKF result ena-

bled it have a higher RMSE than the Wang-Wang AKF. 

The difference between the RMSEs of both methods was 

more than a factor of ten. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Experiment 2 Result of (a) Ultrasonic Sensor 

Measurement Data, (b) CKF Method, (c) Wang-

Wang AKF Method, and (d) Modified Werries-

Dolan AKF Method 
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Table 4 shows the RMSEs for Wang-Wang and Wer-

ries-Dolan methods relative to the CKF for the second 

experiment with ultrasonic sensor. 

 

As in the first experiment, we can see from Figure 6 that 

the AKF by Wang-Wang generated more ripples com-

pared with the other two. In fact, the filtering result was 

almost the same as the measurement data. Table 4 shows 

that Wang-Wang AKF method presented a higher RMSE 

than Werries-Dolan AKF method. 
 

Because the speed at the second experiment was lower 

than that at the first, the ripple was larger. We can see 

from Eq. (4) that Q depended on the value of the current 

speed; if the speed was low, Q was large, and vice versa. 

The value of encoder uncertainty depended on Q. The 

ultrasonic sensor uncertainty value was a combination of 

the initial Q and the reported uncertainty from encoder; 

this caused ripples in filter result. This means the AKF 

method proposed by Wang-Wang is influenced by the 

value of current speed and not only by state correction. 

 

The problem above can be solved by changing either one 

or the two coefficients in Eq. (4) ,  or . Here, the 

parameter  was changed since it is related to sampling 

time (the unit of   is s−1). To prove this, we chose  to be 

equal to 1 second−1, and the graph of Wang-Wang AKF 

for experiment 2 changed as follows. 

 

We can see from Figure 7 that the encoder result was not 

as satisfying as before. The RMSE for encoder in Table 5 

is higher than that in Table 3, although still smaller than 

that of Werries-Dolan AKF. However, for ultrasonic sen-

sor, the result was better than before; the ripple became 

smaller, and the RMSE in Table 5 is smaller than that in 

Table 4. 

 
Table 4. RMSEs of Second Experiment with Ultrason-Ic 

sensor 

Instrument 
Method 

Wang-Wang Werries-Dolan 

Ultrasonic 

sensor 
1.7 1.2 

 

 

 

 

Figure 7. Experiment 2 Result of Wang-Wang AKF Meth-

od for Encoder, with Coefficient  Changed to 

1 s−1 

 

 

Figure 8. Experiment 2 Result of Wang-Wang AKF Meth-

od for Ultrasonic Sensor, with Coefficient  

Changed to 1 s−1 

 

Table 5. RMSEs of Second Experiment for Encoder and 

Ultrasonic Sensor, Where  = 1 s−1 

 

Instrument Method 

 Wang-Wang 

Encoder 0.0003 

Ultrasonic 

sensor 
1.1 

 

 

As we can see from graphical and RMSE analyses, for 

rotary encoder, Wang-Wang method presented a more 

satisfying result compared to Werries-Dolan method. 

Wang-Wang AKF can filter the measurement data from 

the beginning of measurement, while Werries-Dolan AKF 

needs time for adaptation. For ultrasonic sensor result, 

Werries-Dolan AKF presented a more satisfying result for 

position determination using fusion architecture (Figure 

1). 

 

Although Wang-Wang method presented better result for 

encoder, it required additional appropriate tuning parame-

ters, i.e.,  and . The method also depends on actual 

speed. Werries-Dolan method is more general, since it 

requires no additional tuning parameter and is independent 

of current speed. 

 

5. Conclusion and Further Work  
 

This paper presents a comparative study between an 

adaptive Kalman filtering method proposed by Wang-

Wang and another proposed by Werries-Dolan using 

the CKF as reference. It was observed that both 

adaptive methods are more responsive to changes of 

situation than the CKF. Moreover, for rotary encoder, 

the adaptive method by Wang-Wang presented a more 

satisfying result, compared to the Werries-Dolan 

method. However, this is not the case for ultrasonic 

sensor, for which the Werries-Dolan method 

presented a more satisfying result. Werries-Dolan 

method is also more general than Wang-Wang 

method, since the former requires no additional tuning 

parameter. Further studies need to be conducted to 

fully implement KFs in FPGAs, so that based on the 
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filtered speed and position, FPGA can have a better 

control of piston movement. 
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