
Makara Journal of Technology Makara Journal of Technology

Volume 22 Issue 3 Article 1

12-3-2018

Automated Compilation Test System for Embedded System Automated Compilation Test System for Embedded System

Mohamad Khairi Ishak
School of Electrical and Electronic Engineering, University Sains Malaysia, Nibong Tebal, 14300 Penang,
Malaysia, khairiishak@usm.my

Ooi Jun Hwan
School of Electrical and Electronic Engineering, University Sains Malaysia, Nibong Tebal, 14300 Penang,
Malaysia

Teh Jiashen
School of Electrical and Electronic Engineering, University Sains Malaysia, Nibong Tebal, 14300 Penang,
Malaysia

Nor Ashidi Mat Isa
School of Electrical and Electronic Engineering, University Sains Malaysia, Nibong Tebal, 14300 Penang,
Malaysia

Follow this and additional works at: https://scholarhub.ui.ac.id/mjt

 Part of the Chemical Engineering Commons, Civil Engineering Commons, Computer Engineering

Commons, Electrical and Electronics Commons, Metallurgy Commons, Ocean Engineering Commons, and

the Structural Engineering Commons

Recommended Citation Recommended Citation
Ishak, Mohamad Khairi; Hwan, Ooi Jun; Jiashen, Teh; and Mat Isa, Nor Ashidi (2018) "Automated
Compilation Test System for Embedded System," Makara Journal of Technology: Vol. 22: Iss. 3, Article 1.
DOI: 10.7454/mst.v22i3.3515
Available at: https://scholarhub.ui.ac.id/mjt/vol22/iss3/1

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been
accepted for inclusion in Makara Journal of Technology by an authorized editor of UI Scholars Hub.

https://scholarhub.ui.ac.id/mjt
https://scholarhub.ui.ac.id/mjt/vol22
https://scholarhub.ui.ac.id/mjt/vol22/iss3
https://scholarhub.ui.ac.id/mjt/vol22/iss3/1
https://scholarhub.ui.ac.id/mjt?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/240?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/288?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarhub.ui.ac.id/mjt/vol22/iss3/1?utm_source=scholarhub.ui.ac.id%2Fmjt%2Fvol22%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Makara J. Technol. 22/3 (2018), 115-122

doi: 10.7454/mst.v22i3.3515

 December 2018 | Vol. 22 | No. 3 115

Automated Compilation Test System for Embedded System

Mohamad Khairi Ishak*, Ooi Jun Hwan, Teh Jiashen and Nor Ashidi Mat Isa

School of Electrical and Electronic Engineering, University Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia

*e-mail: khairiishak@usm.my

Abstract

Embedded system testing involves testing an integration of software and hardware. It is increasingly difficult to

evaluate the functionality of each module within a short time because of the increasing number of tests required. In this

paper, a novel stepwise methodology involving the use of an automated compilation test system (ACTS) is proposed, to

improve the quality of testing and optimize the testing time using automation. Using the proposed method, the testing

coverage can be maximized, while minimizing the manual work and testing time required. This ACTS was used to

automate the test code compilation and execution for different hardware modules. The proposed method significantly

saved the testing time by approximately 56.42%, compared to the existing method, while ensuring quality testing

performance.

Abstrak

Sistem Uji Kompilasi Otomatis untuk Sistem Sisipan. Pengujian sistem sisipan melibatkan menguji suatu penyatuan

perangkat lunak dan perangkat keras. Menjadi bertambah sulit untuk mengevaluasi fungsionalitas masing-masing

modul dalam waktu singkat karena peningkatan jumlah pengujian yang diperlukan. Di dalam karya tulis ini, diusulkan

suatu metodologi bertahap baru penggunaan suatu sistem uji kompilasi otomatis (ACTS), untuk meningkatkan kualitas

pengujian dan mengoptimalkan waktu pengujian dengan menggunakan otomatisasi. Dengan menggunakan metode yang

diusulkan, jangkauan pengujian dapat dimaksimalkan, sekaligus meminimalkan waktu manual dan waktu pengujian

yang diperlukan. ACTS ini digunakan untuk mengotomatisasi kompilasi kode uji dan eksekusi untuk modul-modul

perangkat keras yang berbeda. Metode yang diusulkan mengamankan waktu pengujian secara signifikan mendekati

56,42%, dibandingkan dengan metode yang ada, sekaligus memastikan kinerja pengujian kualitas.

Keywords: embedded, testing system, automated, software, hardware

1. Introduction

An embedded system is an electronically controlled

system with an integration of hardware and software. It

consists of software application layers that utilize

services provided by underlying system service and

hardware support layers. A typical embedded system

application consists of multiple layers and user tasks,

which have different functionalities. Hence, in the

design of embedded systems, the interactions among

these different layers play very important roles.

There are two important classes of embedded systems,

which are safety critical embedded system and technical

scientific algorithm-based embedded system [1]. In

addition, host-based embedded devices and target-based

embedded devices are sub-classifications of embedded

systems [2]. On the other hand, testing is an important

process that is executed to identify any possible defect

present in a system using different debugging methods.

Testing needs to be run on an embedded system to

determine the functionality of the system and ensure

quality within the system development process [3], [4].

Errors may occur during the communication between

hardware and software as embedded systems consist of

both hardware and software. Moreover, defects that are

detected in the later stage of system development may

affect the product quality as well as lead to higher cost

of resolution. Therefore, it is important to develop a

timesaving testing technique to detect any possible

interaction faults that may occur.

In this research, a testing methodology consisting of

black box and white box testing is presented for testing

embedded systems. This method can be used to

automate testing and improves the quality of testing by

reducing the testing time and maximizing the overall

 Ishak, et al.

Makara J. Technol. 1 December 2018 | Vol. 22 | No.3

116

coverage. Furthermore, it can help to prioritize the test

case based on the test coverage and defect area to

prepare for the regression test.

2. Materials and Methods

A. Embedded System Testing

Embedded System Design. An embedded system is

typically designed with an assortment of software and

hardware to perform specific tasks in computational

environments. It is usually constructed with the least

powerful computers that can meet the functional and

performance requirements. Embedded systems generally

use microprocessors that combine multiple functions of

a computer on a single device. Figure 1 shows the

typical structure of an embedded system in terms of four

layers, where the first three layers consist of software,

and the fourth consists of one layer of hardware.

Two operating systems, namely Linux and Windows

Embedded, are popularly used to enable the implementation

of embedded systems [5]. Most, but not all, embedded

systems are real-time systems in which the correctness

of an operation not only depends on its accuracy of

functionality but also on the timing of the produced

result. Embedded platforms are designed based on

complex integrated systems, which involve different

multitasking environments. In real-time embedded

systems, each component can perform several different

tasks at the same time, and this dramatically increases

the interactions across components [6]. During the

integration of different layers, if the interactions between

components are not fully tested, unexpected results may

occur and lead to more critical problems. Additionally,

the temporal behavior is another important functional

behavior in the real-time systems [7], [8]. For real-time

embedded system, all requests involved must be handled

and completed within the allocated period after the

event has been triggered. Some general characteristics

of embedded systems [9], [10], which have been observed

from common experience, are discussed in the following

sections:

Figure 1. Structure of an Embedded System [4]

Platform dependent. Most embedded software systems

are not tested in a single runtime environment. Because of

the hardware-dependent characteristics of an embedded

software, different test results may be obtained when the

test is run on host or target environment [11]-[14].

Therefore, the embedded system must be tested in both

host and target environments to enhance the test

coverage; however, this increases the test development

cost, and test distribution to both host and target

environments is time-consuming.

Accuracy of response. To determine the accuracy of an

embedded system in meeting the pre-requirements, the

system performance can be used as an indicator.

Moreover, the response time taken for the request to

complete a single transaction can be another suitable

indicator to obtain the accuracy of embedded system

[15].

Limited resources (memory usage). Memory is an

important element to consider during the design of an

embedded system because of the limited memory

allocated for different tasks.

Software Testing. Software testing is a process of

developing and executing a test plan or written program

with given inputs to ensure the program runs as

designed and without errors. It is one of the important

stages in system development, as it represents the final

stage of validation of design and specification. An ideal

software testing can identify any possible error with

minimum execution time and maximum test coverage.

Software testing plays an important role in reducing any

possible operating cost caused by a defect injected in

the requirement specification and prevents such defect

from persisting to the final stage of a product life cycle.

Inadequate validation of the software system may lead

to higher fixing cost. The condition can be worse if the

defect is found in the field and requires recalling

product from customers [16]-[18]. A successful and

effective testing process reduces a defect lifecycle as

short as possible; thus, most testing processes are

involved in the early stage of development process.

Software testing should be carefully planned to develop

an effective test strategy and avoid any major financial

loss that can arise from poor planning [19]-[21]. During

the software testing planning, the test strategy should be

focused on balancing both testing costs and test

coverage based on the criterion of maximum allowable

defects [22], [23]. In general, software testing can be

divided into two different categories, which are black

box testing and white box testing [24], [25]-[27]. Both

testing methodologies have their merits and demerits,

depending on the testing requirements and scope.

Furthermore, some important principles in software

testing can affect the outcome and efficiency of the

Automated Compilation Test System for Embedded System

Makara J. Technol. 1 December 2018 Vol. 22 No.3

117

overall testing process, and they include: 1) Test case

must be developed based on the requirements of the

system; 2) A test case must contain a clear definition of

the expected output or results; 3) Invalid and

unexpected as well as valid and expected input

conditions must be written in a test case; 4) A test case

should be able to examine a program to check if it

behaves as expected; 5) Created test cases should be

repeatable for use in regression testing; 6) Every test

result should be inspected and analyzed thoroughly. A

test case must always be designed with the aim of

finding a defect.

B. Design of Embedded System Testing Technique

An automated system was designed to improve the

quality of testing by way of reducing the testing time,

compared to manual testing, while optimizing (maintaining

or improving) the overall test coverage. The design

structure of the proposed test methodology comprises

the following stages: 1) Analysis of system design; 2)

Requirement specification; 3) Test code compilation

and execution using a combination of different testing

methods; 4) Test case prioritization; 5) Test sequence

review.

A state diagram that presents the flow of the design

structure is shown in Figure 2. By planning through the

state diagram, every objective of the stages involved in

the design architectures can be effectively achieved.

In the first stage, system design analysis, the overall

design architecture of the system is analyzed. The

terminologies of the communication between hardware

and software are investigated to help in mastering the

software development involved in the embedded system

testing.

In the requirement specification phase, different

environments of software code development platform

are described and discussed in detail. In addition, the

differences between different testing methods are

identified to help in drafting test plans that can improve

test coverage.

In the phase of test code compilation using a combination

of different testing methods, different testing metho-

dologies from both black box and white box testing are

used to develop the most effective testing method. An

automated compilation test system (ACTS) is proposed

to automate the overall compilation process, which

saves a lot of time, compared to manual testing.

In the test cases prioritization phase, test results are

analyzed using tables and graphs. Afterward, the

performances of both test compilation and execution are

evaluated based on the total consumed time to further

prioritize the test case for subsequent regression tests

[28].

In the final stage of the proposed methodology, that is,

test sequence review, test sequences are reviewed to

determine a more effective testing flow for regression

test. The goal of the review is to maximize the test

coverage with minimum execution time.

Additionally, a PXIe embedded controller and several

PXIe modular products from Keysight Technologies are

used in the overall embedded system testing [29].

M9037A is a 3U, four-slot PXIe embedded controller

from Keysight Technologies. One of the hardware

configuration setups that was used to implement the

proposed methodology in testing an embedded system is

shown in Figure 3. In this setup, Keysight M9037A

embedded controller is installed in the slot 1 of

Keysight M9018A PXIe chassis together with M9381A

vector signal generator and M9391A vector signal

analyzer in slot 2 to slot 9.

Figure 2. State Diagram of the Proposed Methodology

Figure 3. Hardware Configuration Setup

 Ishak, et al.

Makara J. Technol. 1 December 2018 | Vol. 22 | No.3

118

Test Code Compilation: Black Box Testing Method.

In the proposed test methodology, all-pairs testing,

which is also known as pairwise testing, is used. This

testing approach takes all possible discrete combinations

of the parameter available in the test code using a

combinatorial method. The total configuration

combinations that are available in this embedded system

testing approach are shown in Table 1.

For each programming language, there are three

possible solution platforms, two solution configurations,

and two configuration modes; hence, the total number

of test cases to cover all possible combinations is 12

configurations (3 × 2 × 2 = 12) for every project file.

After listing all possible discrete configurations, another

testing method from white box testing, which is known

as decision coverage testing, is used to further reduce

the number of configurations needed to be tested.

Test Code Compilation: White Box Testing Method.

The decision coverage testing approach is used to

examine the internal structure of a project file to

determine the valid solution platform before the test

code compilation. This can ensure that every possible

configuration from each decision point is executed at

least once, thereby ensuring that all test configurations

are covered thoroughly [30]. The flowchart of this

decision coverage method that is applied in the test code

compilation process is shown in Figure 4.

At the beginning of the process, the internal structure of

the project file is read and examined. In the analysis

process, the validity of every solution platform is

examined, and for each valid platform, the compilation

process is executed to ensure that no error occurs during

the test code compilation. The result of each

compilation is then processed and analyzed to export a

proper and more readable test result.

According to the flowchart in Figure 4, first, the validity

of “x86” solution platform is examined. If it is valid, the

compilation process will be executed before proceeding

to the next solution platform, which is “x64” platform

checking. On the contrary, if the solution platform is not

valid, the next solution platform will be checked. In

summary, the whole solution platform checking process

will be repeated until all four solution platforms have

been examined. For each valid solution platform, the

compilation process will be performed before checking

the next solution platform.

Automated Compilation Test System. Generally, by

implementing the proposed ACTS, an embedded system

testing with different hardware modules can be tested

based on the automated testing flowchart as shown in

Figure 5. Here, most of the manually performed actions

in the existing testing methods are automated to save the

testing time and improve the quality of result.

Table 1. Configuration System

No.
Solution

Platform

Solution

Configuration

Configuration

Mode

1 (Win32/x86) Debug Simulation

2 x64 Release Hardware

3 Any CPU

Total 3 2 2

Figure 4. Decision Coverage Flowchart

Figure 5. ACTS Flowchart

Automated Compilation Test System for Embedded System

Makara J. Technol. 1 December 2018 Vol. 22 No.3

119

Based on this automated testing flowchart, instead of

launching the test code project file in MS Visual Studio

one by one, the designed compilation tool is first

launched. Afterward, a location path is specified, and all

available test code project files are scanned and listed

under a list box table. From the list box table, all project

files are selected, and test code compilation is auto-

matically performed. After the test code compilation is

completed, all created execution files are automatically

run without any user interaction. Finally, the compilation

and execution test results that have been saved in text

file format are analyzed together. In the proposed test

methodology, the overall testing process is not repeated;

hence, the testing time is less.

Furthermore, this software-based test methodology

eliminates any restriction or dependency on instruments,

and hence, its implementation is more flexible to the

user.

3. Results and Discussion

The ACTS, which was developed in this research, has

been fully utilized to reduce the manual testing time that

is required in the overall embedded system testing

process.

In an embedded system, different hardware modules

were used to validate the integration of the hardware

and software in the system. Every hardware module was

developed with its own software driver to enable

communication between the embedded controller and

the individual hardware modules.

In every software driver of the hardware module,

several test codes, which are also known as example

codes, had been developed by the respective software

driver developer. These test codes were developed in

different languages such as C, C++, C#, and Visual

Basic (VB) to provide different testing platforms.

Moreover, every test code was developed with distinct

functionalities to test the different integrations between

the hardware and software.

Test Code compilation. From the compilation result,

different analyses can be performed to further understand

the status of the compilation test. Examples of some

analyses that were performed on the M9018A

compilation result are summarized in Table 2. From

Table 2, a graph analysis can be further implemented to

obtain a better overview of the compilation test result to

help in regression test planning. Based on the respective

solution platforms in Table 2, where each platform has

two solution configurations (“Debug” and “Release”),

project files for C and C++ will have four outputs, while

project files for C# and VB will have six outputs. In

other words, the total numbers of “pass” and “fail” must

match the total outputs for each project file.

Table 2 shows a total of eight project files, which consist

of two project files for each available language (C, C++,

C#, and VB). Project files of C and C++ were compiled

with two “pass” and two “fail,” while all project files of

C# and VB were successfully compiled without error.

Through the combination of different solution con-

figurations and solution platforms, there were four

configurations for each of the example codes in C and

C++, while for C# and VB, there were six configurations

for each of the example codes.

Figure 6 demonstrates that for the same hardware

module, only a slight difference existed between the

project file or test code compilation times in both the

simulation and hardware modes, as both modes were

compiled using the same test code. Since the test code

compilation is hardware-independent, both simulation

mode and hardware mode did not significantly affect the

compilation time.

Test Code Execution. After the project file or test code

compilation, all execution files that were created during

the compilation process were searched and executed using

Table 2. M9018A Configuration Table

Project File Platform Configuration P F

AgM9018_CppIviC

_Monitor 2 2 2 2

AgM9018_CppIviC

_Trigger 2 2 2 2

CPP_M9018Monitor 2 2 2 2

CPP_M9018Trigger 2 2 2 2

CS_M9018Monitor 3 2 6 0

CS_M9018Trigger 3 2 6 0

VB_M9018Monitor 3 2 6 0

VB_M9018Trigger 3 2 6 0

Remarks: P – Pass; F – Fail

Figure 6. Compilation Time Analysis for Different Modules

 Ishak, et al.

Makara J. Technol. 1 December 2018 | Vol. 22 | No.3

120

ACTS. All result contents which were generated from

the execution files were saved and exported to a result

file in text format. In addition, the total execution time

that was required to complete the overall execution

process was recorded in the result file as an indicator

element to be used in regression test planning.

Besides the test execution result, the execution time

needed for test code execution of different hardware

modules using the ACTS were recorded to show the

comparison between different hardware modules.

Afterward, graph analysis was performed to display a

clearer overview of the result (Figure 7).

Figure 7 shows that the execution times for all execution

files created during the compilation process were longer

when ran in hardware mode, compared to simulation

mode. Different hardware modules had different

execution times, depending on the total project files

available for each module and the complexity of the test

code developed. In this case, the M938xA module was

not included in the comparative analysis because of the

high contrast between its execution time in the hardware

mode compared to other modules.

Comparison between different methods. Every

hardware module had different project files that were

developed with different customized test codes. Moreover,

different test codes may have different complexities,

which can affect the total compilation and execution

times. Through the experiment and implementation of

ACTS on different hardware modules, the obtained

average times consumed are compared in Table 3.

This comparison table shows the total testing time,

including compilation and execution times, for the

project files. Since every project file had different

compilation and execution times because of different

design structures, an average time was taken to make a

general comparison between the existing manual testing

method and the proposed automated testing method. For

30 configurations, the average time consumed for both

compilation and execution using ACTS was calculated

through the result analysis.

Figure 7. Execution Time Analysis for Different Modules

From Table 3, the total time saved by implementing the

proposed methodology in a system of 30 configurations

was around 1388 seconds, which is around 56.42% of

the time consumed using the existing method. In other

words, time consumption was greatly improved.

Moreover, all manual or manpower-operated testing,

including test code compilation and execution, in the

existing method are automated in the proposed test

system. In the existing method, because of the large-

number of configurations that are involved for every

single hardware module, a lot of time and manpower are

consumed for solution platform and solution

configuration switching. Hence, the implementation of

the proposed methodology not only saves time but also

saves manpower resources.

Furthermore, the test compilation result which was

saved in csv format further reduced the extra work of

reinserting the result manually. Through the graph

analysis, the total number of tests that were “pass” or

“fail” can be easily identified. For example, in Table 2,

the compilation test passes in C# and VB but fails in C

and C++. With this type of graph analysis, testing can

be prioritized to focus on the failing area during

regression test planning [31].

Although the testing sequence can be prioritized based

on this graph, it still depends on the testing team to

decide whether to continue testing on project files from

C# and VB to ensure the resolution implemented do not

affect or cause any breakdown on the existing test

status. The continuous testing of all project files can

help to maintain the stability of the software by ensuring

no new error is introduced into the system after the

changes are implemented.

Table 3. Testing Method Comparison Table

Testing

Phase
Testing Method

Time (Seconds) Time

Saved

(s)
EM ACTS

Test code

compilation

and

execution

Code

compilation/

configuration

300 22 278

Code execution/

file exploring
600 30 570

Result analysis 900 900 0

Test case

prioritizatin Graph analysis 60 60 0

Test

sequence

review
Regression test 600 60 540

Total time (seconds) 2460 1072 1388

Total improvement (%) 1072 ÷ 2460 × 100 = 56.42%

Remarks: EM – Existing method

Automated Compilation Test System for Embedded System

Makara J. Technol. 1 December 2018 Vol. 22 No.3

121

Other than this, an execution file that is compiled in the

simulation mode will output a predefined value that is

hardcoded in the development codes. While for an

execution file compiled in the hardware mode,

interaction between the hardware and software will be

first established before starting data retrieval from the

hardware module or making data changes on the

hardware module. In general, execution time for

execution file in hardware mode is longer than in

simulation mode, as in the former, there are interactions

between the hardware and software involved in the

overall process. Furthermore, the possibility of acquiring

an error is higher in hardware mode compared to

simulation mode, which makes the testing in hardware

mode more important than that in simulation mode.

From the results and conducted analyses, the implemen-

tation of the proposed methodology improved the

testing process by way of reducing the required testing

time and manpower resources while ensuring quality

testing performance from both software and hardware

perspectives.

4. Conclusion

In this study, an ACTS comprising both black box and

white box testing methods is proposed to enhance

testing effectiveness. In the system, test case prioritization

and test sequence review are performed after the test

execution to help in planning an effective regression

testing. Moreover, several functional modules were

developed in batch command script and C# programming

language to help in completing the whole research. For

proof of concept, the proposed method was implemented

on different hardware modules in an embedded system,

where the general characteristics of this method were

exhibited. The implementation of the proposed method

resulted in significant time saving, as most of the

actions in the existing manual testing were automated;

hence, a testing time reduction of around 56.42%,

compared to the existing method, was realized, while

maintaining the same coverage. Through different

analyses using table and graphs, it was demonstrated

that this proposed methodology can be effectively

implemented for embedded system testing.

References

[1] S.P. Karmore, A.R. Mahajan, International

Conference on Emerging Trends in Engineering

and Technology, Nagpur, 2013, pp. 46-47.

[2] M. Wahler, E. Ferranti, R. Steiger, R. Jain, K.

Nagy, International Conference on Software

Testing, Verification and Validation, Montreal,

QC, 2012, pp. 457-466.

[3] R. Harwahyu, A.S. Manaf, B.S. Ananto, B.A.

Wicaksana, R. F. Sari, J. Comput. Sci. 9/6 (2013)

810.

[4] S.P. Karmore, A.R. Mahajan, International

Conference on, Colombo, 2013, pp. 567-572.

[5] J. Guan, J. Offutt, Software Testing, Verification

and Validation Workshops (ICSTW), 2015 IEEE

Eighth International Conference on, Graz, 2015,

pp. 1-10.

[6] Wei-Tek Tsai, L. Yu, F. Zhu, R. Paul, IEEE

Software. 22/4 (2005) 75.

[7] S. Kukolj, V. Marinkovic, M. Popovic, S. Bognar,

Engineering of Computer Based Systems (ECBS-

EERC), 2013 3rd Eastern European Regional

Conference on the, Budapest, 2013, pp. 153-156.

[8] M.A. Wehrmeister, L.M. Ceron, J.L.d. Silva,

Computing System Engineering (SBESC), Brazilian

Symposium on, Natal, 2012, pp. 119-124.

[9] H. Wu, Systems and Informatics (ICSAI), 2012

International Conference on, Yantai, 2012, pp.

2524-2527.

[10] H.M. Qian, C. Zheng, International Conference on,

Wuhan, 2009, pp. 1-5.

[11] M.A. Wehrmeister, An Aspect-Oriented Model-

Driven Engineering Approach for Distributed

Embedded Real-Time Systems. M¨unster: Verlag

Monsenstein und Vannerdat, 2009.

[12] M.A. Wehrmeister, E.P. Freitas, C.E. Pereira, F.R.

International Symposium on Object and

Component-Oriented Real-Time Distributed

Computing (ISORC'07), Santorini Island, 2007,

pp. 428-432.

[13] D.K. Saini, H. Saini, 3rd International Conference

on Quality, Reliability and INFOCOM Technology

(Trends and Future Directions), Indian National

Sciences and Academics, New Delhi (India)

Conference proceeding, 2006.

[14] D.K. Saini, N. Gupta, J. Inf. Technol. 3/3 (2007)

17.

[15] J. Liu, E.A. Lee, IEEE Control Syst, 23/1 (2003) 75.

[16] S.M.A. Shah, D. Sundmark, B. Lindström, S.F.

Andler, in IEEE Access, 4 (2016) 1859-1871.

[17] B. Qu, Z. Chen, Y. Lu, Future Computer and

Communication (ICFCC), 2010 2nd International

Conference on, Wuhan, 2010, pp. V2-370-V2-373.

[18] B.G. Van Treuren, J.M. Miranda, IEEE Des.Test.

Comput. 20/2 (2003) 25.

[19] U. Connie, Smith, G. Lloyd Williams, Performance

Solutions A Practical Guide to Creating Responsive,

Scalable Software. Boston: Pearson Education,

vol. 20, no. 5, 2003.

[20] H. Jin, L.Y. Chen, L.M. Zeng, B.L. Li, International

Conference on, Sichuan, 2008, pp. 243-247.

[21] L. Shuping, P. Ling, Computer Science and

Information Technology, 2008. ICCSIT '08.

International Conference on, Singapore, 2008, pp.

463-466.

[22] N. Chouhan, M. Dutta, M. Singh, Computational

Intelligence and Communication Networks (CICN),

2014 International Conference on, Bhopal, 2014,

pp. 1106-1112.

 Ishak, et al.

Makara J. Technol. 1 December 2018 | Vol. 22 | No.3

122

[23] M. Sharma, B.S. Chandra, in Software Engineering

Advances (ICSEA), 2010 Fifth International

Conference on, 2010, pp. 459-464.

[24] T. Murnane, K. Reed, in Software Engineering

Conference, Proceedings. 2001 Australian, 2001,

pp. 12-20.

[25] S. Liu, Y. Chen, J. Syst. Software. 81/2 (2008)

248.

[26] J.H. Hayes, A.J. Offutt, in Software Reliability

Engineering, Proceedings. 10th International

Symposium on, 1999, pp. 199–209.

[27] J.H. Andrews, S. Haldar, Y. Lei, C. Felix, H. Li.

Tool Support for Randomized Unit Testing.

Proceedings of the First International Workshop

on Random Testing, July 2006 (RT’06). pp. 36-45.

[28] D. Stotts, M. Lindsey, A. Antley. An Informal

Formal Method for Systematic JUnit Test Case

Generation, Technical Report TR02-012 April

2002. pp 2-12.

[29] J. Hartmann, C. Imoberdoff, M. Meisinger. UML-

Based Integration Testing, International Symposium

on Software Testing and Analysis, ACM Press,

2000, pp. 60-70.

[30] H. Yuan, T. Xie Substra: Proceedings of the 2006

International Workshop on Automation of Software

Test (Shanghai, China, May 23-23, 2006). AST

'06. ACM Press, New York, NY, 2006, pp. 64-70.

[31] Q. Gu, B. Tang, D. Chen, International Symposium

on Parallel and Distributed Processing with

Applications, Taipei, 2010, pp. 419-426.

	Automated Compilation Test System for Embedded System
	Recommended Citation

	Automated Compilation Test System for Embedded System

