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Abstract

This paper describes a novel method for controlfiotive prosthetics by integrating surface electrognaphy (SEMG)
and electroencephalograph signals to improve itstiveness. This paper also compares the new rdgfRDA-2) with
other existing methods (AND and OR) for controlliagtive prosthetics. Based on analysis, RTA-2 feathigher true
positive rate (TPR) and balanced accuracy (BA) thsib method. On the other hand, the new method (R] Aields
lower false detection rate (FPR) than OR methodalysis also shows that RTA-2 possesses equal TPR, &1d BA
with the detection of movement intention using sEl&ed system. Although the RTA-2 method shows lequa
performance with the sEMG-based system, it presam@sdvantage for driving active prosthetics to enfaster and to
reduce its total time response by generating mareement commands.

Abstrak

Hybrid Brain-Computer Interface: Metode Baru dalam Integrasi Sinyal EEG dan sEMG mtuk Pengendalian
Aktif Prosthetics. Paper ini menjelaskan metode baru untuk mengiadgirostheticsaktif dengan mengintegrasikan
sinyal elektromiograf (SEMG) dan elektroensefalég(BEG) dalam rangka meningkatkan sifat intuitif nga
dimilikinya. Selain itu, dalam paper ini juga membagkan metode baru (RTA-2) dengan metode lainyyelah ada
(AND dan OR) untuk mengendilikaprostheticsaktif. Berdasarkan analisis, metode RTA-2 memilikiai True
Positive Ratg TPR) danBalanced AccuracyBA) lebih tinggi dibandingkan metode AND. Seldial terebut, metode
RTA-2 memilki kesalahan deteksi (FPR) yang lebidah dibandingkan metode OR. Berdasarkan anatalsisT PR,
FPR dan BA yang dimiliki metode RTA-2 ini sama dengakurasi deteksi intensi gerakan berbasis sisiz8G.
Namun demikian, meskipun TPR, FPR dan BA dari mnetedA-2 sama dengan metode yang hanya berbas@l siny
SEMG, metode RTA-2 memiliki keunggulan dalam memigdikan prostheticaktif sehingga dapat bergerak dengan
kecepatan lebih cepat dari sebelumnya dan mengutatad waktu responnya dengan cara menghasilkaimtpa
keluaran kecepatan gerakan yang lebih banyak.

Keywords: active prosthetic, AND method, electreph@alography (EEG), intuitive, OR method, RTA-2hoe
surface electromyography (SEMG)

1. Introduction prosthesis could move along with body movement with
short time difference or delay.

In the last decades, experiments on active prasshet

based on surface electromyography (SEMG) signals An active prosthetic is considered to be a reaktim

have increased significantly. Such experiments ditoe system if it features a time delay below 250 ms [1]
increase functionalities by using multichannel SEMG Some methods have been developed to shorten tke tim
signals and to decrease the total response tidjelflence, delay or total time response in active prostheti&s.
active prosthetics will be more intuitive and passe  proportional prosthetics can shorten the total time
close functionalities from the limbs. Consequersilstive response by controlling its movement velocity (sash
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quick grasping) based on the amplitude of SEMGaign
[2]. A proportional prosthesis can use multi-stage
threshold to control the movement velocity of aetiv
prosthetics [2]. On the other hand, an experiment
conducted by Khokhaat al. [1] showed that the SEMG-

(FPR) (false detection of movement intention) istre
condition interval than SEMG-based systems [5-8].
Figure 2 illustrates the basic diagram of the Bg@item.

Kirchneret al[5]. Planellaset al.[8] and Lewet al. [6]

based system can classify movement commands after showed that the BCI system could be used as a

detecting SEMG signals with high accuracy (up t6%9

and a short total time response (250 ms). Figure 1
illustrates the general block diagram of sEMG-based
active prosthetics: (a) general diagram block dfvac
prosthetics for controlling its velocity; (b) a geal
block diagram of active prosthetic controlling vtslocity

and functionality [4].

Kirchneret al. developed another method to shorten the
total time response of active prosthetics [5]. Aveot
experiment conducted by Kirchnet al. showed the
possibilities of brain-computer interface (BCI) ®m to
control actuators, such as active prosthetics. 3ystem
predicts body movement from non-invasive electro-
encephalograph (EEG) signals before the onsettofhc
movement. Lewet al. [6] and Shibakiet al [7] have
explained that the BCI system could predict movemen
intention up to 2 s before the onset of movemehts T
advantage enables the BCI system to drive or cordman
active prosthetics before the onset of actual body
movement. However, the BCI system features a drekvba
in detection of movement intention in rest conditio
EEG-based systems yield higher false positive rate

controller in detection of movement intention befor
actual movement onset with TPR of £0.7 up to +Q8.

the other hand, experiments also showed that the BC
system features a FPR in rest interval from +0.ltaip
+0.3. Ideally, system should possess a FPR valualeq
to 0.0. Compared with SEMG-based system, let\al.
showed the lower FPR value of sSEMG-based systems
than EEG-based systems.

Kirchneret al [5] and Leebet al [9] have shown that
the integration of sEMG-based system into BCI or
EEG-based system (hybrid BCI) can improve BCI
performance (TPR and FPR). Kirchnet al. [5] also
showed that the hybrid BCI can improve the inteitigss

of active prosthetics using AND and OR method. Base
on the experiments of Kirchnet al. [5] and Leelet al

[9] and the advantages and disadvantages of sEMG-
based and EEG-based systems, this paper will descri
other new methods and analyses for integrating SEMG
into the BCI system to improve the intuitiveness of
SEMG-based active prosthetics by reducing theml tot
time response.

. sEMG Motor .
‘ —> . > es > » Pr ‘
sEMG signal Amplitude Threshold Control Prosthetics
(@)
>
—» S EFMG i
SEMG signal | - ‘SI,M(] . Mf)Emnr I‘\/Iotor Ll Prosthetics
. | Features Classification Control
BN
A
sEMG Speed / Force
Amplitude Control
(b)

Figure 1. Block Diagram of Active Prosthetics. (aNon-Pattern Recognition Approach; (b) Pattern Recogition Approach [4]

Signal
Processing

Pattern Recognition

]

Actuator

Feedback

Subject

L=

Figure 2. Basic BCI System
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30 Darmakusuma, et al.

2. Methods

Based on the analysis of both systems (SEMG-bas#d a
EEG-based systems), one way of reducing the total t
response of SEMG-based active prosthetics is isorga
the movement velocity of prosthetics to reach the
desired position [10, 11]. Figure 3 illustratesthnalysis.
Referring to the movement detection from Figureithw
block diagram of active prosthetics in Figure 1¢a)
1(b), the active prosthetic moves after detecting
movement intention from the SEMG signal. By inciegs
the movement velocity of the active prosthetic, tinee

to reach the desired position can be reduced. A¢tho
proportional prosthetics can reduce the total time
response, this paper proves that the proposed thetho
can be applied in both non-pattern recognition and
pattern recognition approaches, Herle et al. [4] by
smoothing the movement velocity of proportionahact
prosthetics.

200

Amplitude (uV)

elapsed time to achieve
desired position

In this analysis, an on/off SEMG-based active [hetst
[12,13], is used to prove the effectiveness of the
alternative method (RTA-2). This consideration aséd

on the fact that the on/off active prosthetic systs the
simplest function for active prosthetics [12,13Jx @e
other hand, this analysis also uses the BCI syshtain
was implemented by Kirchnest al [5], Lew et al. [6]

and Planellaset al [8]. They used “rest” and “pre-
movement” (or movement intention) detection to deci
whether active prosthetics move. This analysisgiraies
the sEMG-based and EEG-based systems. Figure 4
illustrates the diagram block for this analysis.stmplify

the approach, this analysis focused on the “Integra
Method” block with two inputs and one output.

The data of this analysis are obtained from another
sEMG and EEG-based system experimental results. To
analyze the TPR, FPR, and BA of sEMG-based and
EEG-based systems, this analysis assumes thaPtRe T

actual movement

Y/

desired position of
active prosthetics

P

sEMG signal

Time (second)

Figure 3. Time Analysis of Arm Detection of Movemenintention Using an SEMG Signal [9]

SEMG Signals | Slgna! —» Threshold
Processing
*
Muscle y
Integration Active
Method Prosthetics
Brain K
v
EEG Signals | Slgna! Patte'rr)
Processing Recognition

Figure 4. Block Diagram of SEMG and EEG Signal Integation for Active Prosthetic Control
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FPR, and BA of the systems are stochastic eveats th
are probabilistic nature. Therefore, this analysies a
probabilistic approach to calculate the TPR, FPR] a
BA of the systems. On the other hand, the TPR, FPR,

< 1 [5-6]. Hence, the data can be illustrated by @&9.

for the EEG-based system and Eg. (2) for the SEMG-
based system witha < tb. Figure 5 illustrates the time
diagram of movement intention detection of SEMG-

and BA of sEMG-based and EEG-based systems are based and EEG-based systems.

also time-dependent. To analyze these variablea at
specific time interval, the data will follow the sidts
and conclusions from other experiments that use@-EE
based and sEMG-based systems.

Based on the conclusions of their experiments, &b
and Harlett [7], Lewet al. [6], Kirchneret al [5] and
Bai et al [14] have shown that (1) the movement
intention based on EEG signal could be detecteth @p

s before actual movement onset; (2) movement iictent

based on sEMG signal could be detected around 250—

500 ms before the actual movement onset. If wendefi
the following: 1) P(Deeg)=P(A) is the probability of
movement intention detection based on EEG signals,
and Q¢ is a detection of EEG-based system, where
Deeg = {0,1}. Decision value “0” indicates that the
system detects no movement intention, whereas “1”
denotes detection; B(Degws)=P(B) is the probability of
movement intention detection using sEMG signals.
Devc is a detection based on sEMG-based system,
where Qe = {0,1}. Decision value “0” indicates that
the system detects no movement intention, whergas *“
denotes detection.

Then, theP(A) value fort < ta reaches below 0.5
(chance level), whereas tiR{A) value fort > ta totals
0.6 < P(A) < 0.8 [5-8]. On the other hand, th¥B)
value fort < tb measures below 0.001, and tRéB)
value fort > tb features a range of values of &&(B)

01< P(A)< 05 t<ta
P(A) = 1
06< P(A)< 08, tx>ta 1)
0.0001< P(A) < 0001 t<tb
P(B) = )
08<P(A)<1 txth

Estimating TPR and FPR of and and OR Methodology
Kirchner et al [5] used two methods for integrating
sEMG-based and EEG-based systems. They used binary
logic-like methodologies: AND and OR. In binary
systems, the AND and OR methodologies can be
illustrated by Figure 6.

To calculate the TPR and FPR of a system with AND
and OR method, the analysis uses Eq. (3) and Bq. (4
[15]. To control the active prosthetic, the mapping
function f(.)2 ® in Eqg. (5) and Eq. (6) is used to
convert the system's decision from movement intanti
detection to movement velocity of active prostteetic

P(An B) = P(AP(B)

®)

P(ALIB) = P(A) + P(B) - P(An B) @)
0-0

f AND (PEmG, Deec) = {1 . wlalnD (5)

System detects the movement

| intention using EEG
sl
P(DEEG) = P(4) : :
1l
DeEG i
‘[ L System detects the movement
} intention using SEMG
T
[
P(DEMG) = P(B) \ !
[
I
Demc } |l :
| I
L1 » t
-6 -5 -4 3 -2 -1 1o
b

ta

1 2

t
Time (second)

Figure 5. Time Diagram of Movement Intention Detecion of SEMG-Based and EEG-Based Systems

P4
DEEG )

o ;DP(A ~B)
P(B)
{(a)

P)

DrEG
o ::I}HA UB)

P(B)
(k)

Figure 6. Logic Diagrams of (a) AND Method and (b) ® Method
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32 Darmakusuma, et al.

Using the results from Kirchner's experiments [Bf.

(3) and Eq. (4) can estimate the TPR, FPR, and BA o
AND and OR methods. The TPR value indicates true
detection of movement intention before actual mosem
onset, whereas the FPR value indicates false dmtect
of movement intention in “rest” condition. Table 1
shows the comparison of TPR, FPR, and BA from the
work of Kirchner et al and the estimated values
obtained using Eq. (3) and Eq. (4). Based on catlicurs,

the TPR, FPR, and BA of AND and OR methods can be
estimated by using Eq. (3) and Eq. (4) with an reofo
+0.0001.

Derivation of RTA-2 Methodology. The RTA-2

where Qg refers to a detection of the EEG-based
system, Ryg is a detection of the SEMG-based system,
and Z' is a delay function at t. This delay function
represents the decision time where a command signal
originating from the primary cortex area travelsthe
muscles through the thalamus. Eq. (7) covers all
movements: reflex by ¢ and voluntary movement by
Deec Z' - Deve.

To analyze and estimate the accuracy of RTA-2 nektho
this paper generates a model from Table 2 for the n
methodology with the following model feature: (Zigtn
accuracy for detecting movement; (2) suppresses
mistake decisions or detection of rest conditioB) (

method is developed based on movement in the human yields short total time response by increasing mmoese

body [16]. The brain receives all sensory inforimator
stimuli from body sensors. After all sensory infation

velocity. Table 2 illustrates that the output of RZ
method possesses the same value with the detection

are received by the brain, humans deliberates on output of the sEMG-based system. The background

procedural activities to response to stimuli. Some

behind this design is attributed to the high TP&y |

examples of this phenomenon can be observed from FPR, and high BA of the sEMG-based system. Hence,

event-related desynchronization/event-related synch
ronization of brain signals if the response(s) show
correlation with body movements [5-18]. Thus, a
movement starts when an individual thinks or intetal
move his body until the end of movement.

All movement intentions do not always become body

parameters (1) and (2), which are required to gegeer
the new method (RTA-2), can be achieved by deriving
the output of the sEMG-based system. On the other
hand, Figure 6 is generated as a model of RTA-2
methodology based on Table 2.

Based on the phenomenon, the detection of EEG-based

movements. Somatosensory motor cortex, pre-motor system (Reg) and that of SEMG-based systemg(id)

cortex, primary motor cortex, and the thalamus are
important brain areas for producing body movements
[16-18]. Although a command signal has been geedrat
by primary motor cortex, the signal can reach the
muscles if the thalamus continually relays thisnalg
Based on this information, humans possess timleird t
(decide) whether to move their body or stay stitinfi

the time a command signal is generated by the pyima
cortex area until such command signal is relayethéo
muscles by the thalamus [16]. Based on this phenome
this paper proposes Eq. (7) to control an actiesthetic:

frra, (Demc, Deec)
= Dewvc + (Deec- 27 )Devc  (7)
= (L+ Deec- z™") Dewmc

Table 1. Estimated Accuracy from The System Based on
The Experiments of Kirchner et al [5]

Input Output
Par
EEG EMG OR AND OR* AND*
TPR 0.88 0.86 0.98 0.76 0.98 0.76
FPR 0.1 0.001 0.1 0.0002 0.1 0.0001
BA 0.89 093 0.94 0.88 0.94 0.88

*estimation uses Eg. (3) and Eq. (4)

Makara J. Technol.

are independent. Hence, the estimated probabifity o
TPR and FPRR(C) andP(D), are as follows:
P(C) = P(An B) = R AP(B) (8)

P(D) = P(A'nB) = (1~ P(A))P(B) 9)

Table 2. Possible Output of OR, AND, and RTA-2 Methds
with Dgye and Degg as Input

Input Output
No
Demve Deec OR AND RTA-2
1 0 0 0 0 0
2 0 1 1 0 0
3 1 0 1 0 1
4 1 1 1 1 1

P(B)

Figure 6. Logic Diagram of RTA-2 Method
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Referring to Eq. (4), the estimated probability T®#R
and FPR of RTA-2 metho®(C O D), is as follows:

P(COD) = P(C) + P(D) + P(C n D) (10)
As P(C) and P(D) are mutually independent,
P(C'nD') =0and Eg. (10) becomes Egq. (11):
P(C O D) = P(C) + P(D) (11)

To achieve parameter (3), RTA-2 is designed to thep
output value of Eqg. (7) into three different moverne
velocities. This relation function can be obserireéq.
(12).

0 -0 ,Demc=0 Deec={01}
fr7ap(DEMGDEE =41 - a2, Demc=1,Deec=0,m R (12)
2 > a2 ,Demc=1Deec=1 w2 0R

Assuming that the first movement velocity ds, the
second movement velocity is, andw, > w, then time

t,, which is required for active prosthetics to redch
same desired position with movement velocity, is
always smaller than the time required by movement
velocity o;. This statement can be proven by Eq. (13).
Using Eg. (7) enables the on/off active prosthetws
possess one more state. If the available statdlad f
with a high-speed command, the system will redtee i
total time response.

'y

3. Results and Discussion

(2]

o2

e (13)

Calculating the estimated accuracy from the threthaus
(AND, OR, and RTA-2) by using the experimental t&ssu
from the work of Kirchneet al, we observe that RTA-

2 features the same accuracy (TPR and FPR) and BA
with sEMG-based systems. The BA of sEMG-based
system and RTA-2 is higher than that of the AND
method but lower than that of the OR method. Altditou
the RTA-2 method yields a lower BA than OR method,
the FPR of RTA-2 is lower than that of the OR mettho
These values imply that the RTA-2 method yieldsdow
false detection in rest condition than OR. Basedhim
observation, the RTA-2 method presents higher
probability to be implemented than the OR method.

Comparing the performances of RTA-2 method with
AND method, we note that the RTA-2 exhibits higher
FPR than AND method (difference value of 0.0009).
Although AND method features better FPR value
parameter, RTA-2 yields higher TPR and BA values.

Makara J. Technol.

These results are also proven by the results of OR,
AND, and RTA-2 methods in Tables 4, 5, and 6,
respectively.

In “rest” interval, as illustrated in Table 3, thetimated
detection of movement intention forms the relation
P(OR’) < P(‘RTA-2") < P(‘AND’). By increasing the
value of P(A) and/orP(B), the estimated detection of
movement intention is consistenf®('‘OR’) < P(‘RTA-

2') < P(AND’). Including all input possibilities, the
estimated detection of movement intention from all
methods is constantR(‘AND’) < P(‘RTA-2') = P(A) <
P(B) < P('OR’). As this detection is on “rest” interval,
then this estimated detection of movement intenison
FPR.

In transition interval, Table 5 shows that the raatied
detection of movement intention features the refati
P(OR’) < P(‘RTA-2") < P(‘AND’). By increasing the
value of P(A) and/or P(B), the estimated detectidn
movement intention is consistenfR('‘OR’) < P(‘RTA-

2’) < P('AND’). Comparing with all possible methods
that could be implemented in active prostheticg th
estimated detection of movement intention of all
methods isP('AND’) < P(‘RTA-2") = P(A) < P(B) <
P('OR"). From Eg. (7), this transition interval defines
the delay function.

In pre-movement interval, Table 6 shows that the
estimated detection of movement intention prestrds
relation P('OR’) > P(‘RTA-2’) > P(‘AND’). By
increasing the value d?(A) and/orP(B) the estimated
detection of movement intention for the method is
invariably P(OR’) > P(‘RTA-2’) > P(‘AND).
Returning to all possible methods, the estimated
detection of movement intention methods manifdsés t
correlation P(OR’) > P('RTA-2") = P(A) > P(B) >
P(AND’). From the point of view of the RTA-2
method, the following are deduced: 1) If the system
detects movement intention from the EEG-based syste
in the transition time interval and EMG-based syste

the pre-movement time interval, then the prostletic
will move with velocity w,. 2) If the system detects
movement intention from EEG-based systems
transition time interval but not movement intentfoom
EMG-based systems in pre-movement time interval,
then the prosthetics will move with velocity

in

Table 3. Estimated TPR, FPR, and BA by Using Kirchnes

Results
P Input Output
ar

EEG EMG OR* AND* RTA-2*
TPR 088 0.86 0.98 0.76 0.86
FPR 0.1 0.001 0.1 0.0001 0.001
BA 0.89 093 094 0.88 0.93
*estimated

April 2018| Vol. 22| No.1



34 Darmakusuma, et al.

Table 7 illustrates the possibilities of velocitytput
from the RTA-2 method. We can observe that the RTA-
2 method fulfills all requirements needed to shoitee
total time response. The RTA-2 method shows
possibility to move active prosthetics dependingtltom
decision of sEMG and EEG signals with high
accuracies, low false movement detection in ‘“rest”
condition, and it could move rapidly by increasitng
movement velocity of active prosthetics.

One problem arises from the RTA-2 method. If theéGEE
system can deteetvery movement intention that occurs
0-2 s before the onset of movement, [5-8] the stbje
cannot select the velocity command for active
prosthetics @, or o,). By using motor imagery approach
before doing voluntary movement onset might
overcome this velocity problem. Hence, the delayeti
parameter (2) in Eq. (7) is determined by the time
where motor imagery occurs statistically. Figure 7
illustrates this delay function phenomenon (graagr

Table 4. Estimated Detection of Movement Intention 0©OR, AND, and RTA-2 Method in Rest Interval ¢ <t,)

P(B)
No P(A) 0.1000 0.2000 0.3000
OR AND RTA-2 OR AND RTA-2 OR AND RTA-2
1 0.0001 0.1001 0.0000 0.0001 0.2001 0.0000 0.00m3001 0.0000 0.0001
2 0.0003 0.1003 0.0000 0.0003 0.2002 0.0001 0.00@83002 0.0001 0.0003
3 0.0005 0.1005 0.0001 0.0005 0.2004 0.0001 0.00@B3004 0.0002 0.0005
4 0.0008 0.1007 0.0001 0.0008 0.2006 0.0002 0.00@B3006 0.0002 0.0008
5 0.0010 0.1009 0.0001 0.0010 0.2008 0.0002 0.0003007 0.0003 0.0010

Table 5. Estimated Detection of Movement Intention 0OR, AND, and RTA-2 Method in Transition Interval (t, <t <ty)

P(B)
No P(A) 0.6000 0.7000 0.8000
OR AND RTA2  OR AND RTA2 OR  AND RTA2

1 0.0001 0.6000 0.0001 0.0001 0.7000 0.0001 0.00@8000 0.0001 0.0001
2 0.0003 0.6001 0.0002 0.0003 0.7001 0.0002 0.00@38001 0.0002 0.0003
3 0.0005 0.6002 0.0003 0.0005 0.7002 0.0003 0.00@68001 0.0004 0.0005
4 0.0008 0.6003 0.0005 0.0008 0.7002 0.0005 0.00@88002 0.0006 0.0008
5 0.0010 0.6004  0.0006 0.0010 0.7003 0.0007 0.00108002 0.0008  0.0010

Table 6. Estimated Detection of Movement Intention 0OR, AND, and RTA-2 Method in Pre-Movement Interval (t > t)

P(B)
No P(A) 0.6000 0.7000 0.8000
OR AND RTA-2 OR AND RTA-2 OR AND RTA-2
1 0.8000 0.9200 0.4800 0.8000 0.9400 0.5600 0.80@O9600 0.6400 0.8000
2 0.8500 0.9400 0.5100 0.8500 0.9550 0.5950 0.85@9700 0.6800 0.8500
3 0.9000 0.9600 0.5400 0.9000 0.9700 0.6300 0.90@9800 0.7200 0.9000
4 0.9500 0.9800 0.5700 0.9500 0.9850 0.6650 0.95@9900 0.7600 0.9500
5 1.0000 1.0000 0.6000 1.0000 1.0000 0.7000 1.00a00000 0.8000 1.0000
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Table 7. Probability of RTA-2 Method to Generate Movenent Velocity o, and o, in Pre-Movement Interval (0>t >t,)

P(B)
No P(A) 0.6000 0.7000 0.8000
0 ol ®2 0 ol ®2 0 ol ®2
1 0.8000 0.2000 0.3200  0.4800 0.2000 0.2400 0.560®.2000 0.1600  0.6400
2 0.8500 0.1500 0.3400  0.5100 0.1500 0.2550 0.595M.1500 0.1700  0.6800
3 0.9000 0.1000 0.3600  0.5400 0.1000 0.2700 0.630®@.1000 0.1800  0.7200
4 0.9500 0.0500 0.3800  0.5700 0.0500 0.2850 0.665M.0500 0.1900  0.7600
5 1.0000 0.0000 0.4000  0.6000 0.0000 0.3000 0.700®@.0000 0.2000  0.8000
. . System detects the movement
Subject’s cu_ntrol by usin Iﬁl/ intention using EEG
motor imagery . D
P(DEEG) = P(A) Ta I
|
DEEG L - : :
1 I | | System detects the movement
: : la+— intention using sEMG
T
|
PDmMG)=PB 1 | :
| 1 |
DEMG : L bt
' 11
! ! 1 .
% -5 4 = 4 1 1o 1 2 '
tt 2 _th
Time (second)

Figure 7. Time Diagram of RTA-2 Method with Motor Imagery

4. Conclusions

Based on the analysis above, this paper shows emoth
possibility to control active prosthetics usingfeliént
movement velocities based on the integration of §EM
and EEG signals. The RTA-2 method shows equal
performance with sEMG-based systems. Comparing
with the EEG-based system, the RTA-2 method exhibit
better performance by yielding lower FPR and higher
BA. On the other hand, comparing RTA-2 method with
AND method, RTA-2 shows higher TPR and BA and
lower FPR. Comparing with OR method, RTA-2 presents
lower FPR, higher FPR, and lower BA. Consideriraf th

EMG-based system has been implemented and passed

safety considerations, [19] the RTA-2 method caso al
be implemented as it shows an equal performancB (TP
FPR, and BA) with the EMG-based system. The RTA-2
method can reduce total time response by rapidly
moving the active prosthetic. This assumption is
attributed to the capability of RTA-2 method to raak
other alternative commands to the active prosthetic
From the analysis, RTA-2 performs one more altéraat
command into on/off active prosthetics. If this coand

is used for faster movement velocity command, the
active prosthetics can reach the desired positietef or
require a shorter total time response.

Makara J. Technol.

The RTA-2 method can also be implemented in
proportional active prosthetics. As movement veioci
command of active prosthetics uses the threshold
method, [12-13] hence, by integrating with the BCI
system, the active prosthetics will feature2aN level

of movement velocity command (with N existing a¢ th
level of active prosthetics based on sEMG signals).
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