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Abstract 
 

This paper describes a novel method for controlling active prosthetics by integrating surface electromyography (sEMG) 
and electroencephalograph signals to improve its intuitiveness. This paper also compares the new method (RTA-2) with 
other existing methods (AND and OR) for controlling active prosthetics. Based on analysis, RTA-2 features higher true 
positive rate (TPR) and balanced accuracy (BA) than AND method. On the other hand, the new method (RTA-2) yields 
lower false detection rate (FPR) than OR method. Analysis also shows that RTA-2 possesses equal TPR, FPR, and BA 
with the detection of movement intention using sEMG-based system. Although the RTA-2 method shows equal 
performance with the sEMG-based system, it presents an advantage for driving active prosthetics to move faster and to 
reduce its total time response by generating more movement commands. 
 
 

Abstrak 
 

Hybrid Brain-Computer Interface: Metode Baru dalam Integrasi Sinyal EEG dan sEMG untuk Pengendalian 
Aktif  Prosthetics. Paper ini menjelaskan metode baru untuk mengendalikan prosthetics aktif dengan mengintegrasikan 
sinyal elektromiograf (sEMG) dan elektroensefalograf (EEG) dalam rangka meningkatkan sifat intuitif yang 
dimilikinya. Selain itu, dalam paper ini juga membandingkan metode baru (RTA-2) dengan metode lain yang telah ada 
(AND dan OR) untuk mengendilikan prosthetics aktif. Berdasarkan analisis, metode RTA-2 memiliki nilai True 
Positive Rate (TPR) dan Balanced Accuracy (BA) lebih tinggi dibandingkan metode AND. Selain hal terebut, metode 
RTA-2 memilki kesalahan deteksi (FPR) yang lebih rendah dibandingkan metode OR. Berdasarkan analasis, nilai TPR, 
FPR dan BA yang dimiliki metode RTA-2 ini sama dengan akurasi deteksi intensi gerakan berbasis sinyal sEMG. 
Namun demikian, meskipun TPR, FPR dan BA dari metode RTA-2 sama dengan metode yang hanya berbasis sinyal 
sEMG, metode RTA-2 memiliki keunggulan dalam mengendalikan prosthetic aktif sehingga dapat bergerak dengan 
kecepatan lebih cepat dari sebelumnya dan mengurangi total waktu responnya dengan cara menghasilkan perintah 
keluaran kecepatan gerakan yang lebih banyak. 

 
Keywords: active prosthetic, AND method, electroencephalography (EEG), intuitive, OR method, RTA-2 method, 

surface electromyography (sEMG) 
 
 
 
1. Introduction 
 
In the last decades, experiments on active prosthetics 
based on surface electromyography (sEMG) signals 
have increased significantly. Such experiments aimed to 
increase functionalities by using multichannel sEMG 
signals and to decrease the total response time [1-4]. Hence, 
active prosthetics will be more intuitive and possess 
close functionalities from the limbs. Consequently, active 

prosthesis could move along with body movement with 
short time difference or delay. 
 
An active prosthetic is considered to be a real-time 
system if it features a time delay below 250 ms [1]. 
Some methods have been developed to shorten the time 
delay or total time response in active prosthetics. A 
proportional prosthetics can shorten the total time 
response by controlling its movement velocity (such as 
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quick grasping) based on the amplitude of sEMG signals 
[2]. A proportional prosthesis can use multi-stage 
threshold to control the movement velocity of active 
prosthetics [2]. On the other hand, an experiment 
conducted by Khokhar et al. [1] showed that the sEMG-
based system can classify movement commands after 
detecting sEMG signals with high accuracy (up to ±96%) 
and a short total time response (250 ms). Figure 1 
illustrates the general block diagram of sEMG-based 
active prosthetics: (a) general diagram block of active 
prosthetics for controlling its velocity; (b) a general 
block diagram of active prosthetic controlling its velocity 
and functionality [4]. 
 
Kirchner et al. developed another method to shorten the 
total time response of active prosthetics [5]. Another 
experiment conducted by Kirchner et al. showed the 
possibilities of brain-computer interface (BCI) system to 
control actuators, such as active prosthetics. This system 
predicts body movement from non-invasive electro-
encephalograph (EEG) signals before the onset of actual 
movement. Lew et al. [6] and Shibaki et al. [7] have 
explained that the BCI system could predict movement 
intention up to 2 s before the onset of movement. This 
advantage enables the BCI system to drive or command 
active prosthetics before the onset of actual body 
movement. However, the BCI system features a drawback 
in detection of movement intention in rest condition. 
EEG-based systems yield higher false positive rate 

(FPR) (false detection of movement intention) in rest 
condition interval than sEMG-based systems [5-8]. 
Figure 2 illustrates the basic diagram of the BCI system. 
 
Kirchner et al [5]. Planellas et al. [8] and Lew et al. [6] 
showed that the BCI system could be used as a 
controller in detection of movement intention before 
actual movement onset with TPR of ±0.7 up to ±0.8. On 
the other hand, experiments also showed that the BCI 
system features a FPR in rest interval from ±0.1 up to 
±0.3. Ideally, system should possess a FPR value equal 
to 0.0. Compared with sEMG-based system, Lew et al. 
showed the lower FPR value of sEMG-based systems 
than EEG-based systems. 
 
Kirchner et al. [5] and Leeb et al. [9] have shown that 
the integration of sEMG-based system into BCI or 
EEG-based system (hybrid BCI) can improve BCI 
performance (TPR and FPR). Kirchner et al. [5] also 
showed that the hybrid BCI can improve the intuitiveness 
of active prosthetics using AND and OR method. Based 
on the experiments of Kirchner et al. [5] and Leeb et al. 
[9] and the advantages and disadvantages of sEMG-
based and EEG-based systems, this paper will describe 
other new methods and analyses for integrating sEMG 
into the BCI system to improve the intuitiveness of 
sEMG-based active prosthetics by reducing their total 
time response. 

 

 
(a) 

 

 
(b) 

 

Figure 1. Block Diagram of Active Prosthetics. (a) Non-Pattern Recognition Approach; (b) Pattern Recognition Approach [4] 
 
 

 
 

Figure 2. Basic BCI System 
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2. Methods 
 
Based on the analysis of both systems (sEMG-based and 
EEG-based systems), one way of reducing the total time 
response of sEMG-based active prosthetics is increasing 
the movement velocity of prosthetics to reach the 
desired position [10, 11]. Figure 3 illustrates this analysis. 
Referring to the movement detection from Figure 3 with 
block diagram of active prosthetics in Figure 1(a) or 
1(b), the active prosthetic moves after detecting 
movement intention from the sEMG signal. By increasing 
the movement velocity of the active prosthetic, the time 
to reach the desired position can be reduced. Although 
proportional prosthetics can reduce the total time 
response, this paper proves that the proposed method 
can be applied in both non-pattern recognition and 
pattern recognition approaches, Herle et al. [4] by 
smoothing the movement velocity of proportional active 
prosthetics. 
 

In this analysis, an on/off sEMG-based active prosthetic 
[12,13], is used to prove the effectiveness of the 
alternative method (RTA-2). This consideration is based 
on the fact that the on/off active prosthetic system is the 
simplest function for active prosthetics [12,13]. On the 
other hand, this analysis also uses the BCI system that 
was implemented by Kirchner et al. [5], Lew et al. [6] 
and Planellas et al. [8]. They used “rest” and “pre-
movement” (or movement intention) detection to decide 
whether active prosthetics move. This analysis integrates 
the sEMG-based and EEG-based systems. Figure 4 
illustrates the diagram block for this analysis. To simplify 
the approach, this analysis focused on the “Integration 
Method” block with two inputs and one output. 
 
The data of this analysis are obtained from another 
sEMG and EEG-based system experimental results. To 
analyze the TPR, FPR, and BA of sEMG-based and 
EEG-based systems, this analysis assumes that the TPR,   

 

 
 

 

Figure 3.  Time Analysis of Arm Detection of Movement Intention Using an sEMG Signal [9] 
 
 

 
 

Figure 4.  Block Diagram of sEMG and EEG Signal Integration for Active Prosthetic Control 
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FPR, and BA of the systems are stochastic events that 
are probabilistic nature. Therefore, this analysis uses a 
probabilistic approach to calculate the TPR, FPR, and 
BA of the systems. On the other hand, the TPR, FPR, 
and BA of sEMG-based and EEG-based systems are 
also time-dependent. To analyze these variables at a 
specific time interval, the data will follow the results 
and conclusions from other experiments that used EEG-
based and sEMG-based systems. 
 
Based on the conclusions of their experiments, Shibaki 
and Harlett [7], Lew et al. [6], Kirchner et al. [5] and 
Bai et al. [14] have shown that (1) the movement 
intention based on EEG signal could be detected up to 2 
s before actual movement onset; (2) movement intention 
based on sEMG signal could be detected around 250–
500 ms before the actual movement onset. If we define 
the following: 1) P(DEEG)=P(A) is the probability of 
movement intention detection based on EEG signals, 
and DEEG is a detection of EEG-based system, where 
DEEG = {0,1}. Decision value “0” indicates that the 
system detects no movement intention, whereas “1” 
denotes detection; 2) P(DEMG)=P(B) is the probability of 
movement intention detection using sEMG signals. 
DEMG is a detection based on sEMG-based system, 
where DEMG = {0,1}. Decision value “0” indicates that 
the system detects no movement intention, whereas “1” 
denotes detection. 
 
Then, the P(A) value for t < ta reaches below 0.5 
(chance level), whereas the P(A) value for t ≥ ta totals 
0.6 ≤ P(A) ≤ 0.8 [5-8]. On the other hand, the P(B) 
value for t < tb measures below 0.001, and the P(B) 
value for t ≥ tb features a range of values of 0.8 ≤ P(B) 

≤ 1 [5-6]. Hence, the data can be illustrated by Eq. (1) 
for the EEG-based system and Eq. (2) for the sEMG-
based system with tbta < . Figure 5 illustrates the time 
diagram of movement intention detection of sEMG-
based and EEG-based systems. 
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Estimating TPR and FPR of and and OR Methodology. 
Kirchner et al. [5] used two methods for integrating 
sEMG-based and EEG-based systems. They used binary 
logic-like methodologies: AND and OR. In binary 
systems, the AND and OR methodologies can be 
illustrated by Figure 6. 
 
To calculate the TPR and FPR of a system with AND 
and OR method, the analysis uses Eq. (3) and Eq. (4) 
[15]. To control the active prosthetic, the mapping 
function f(.)� ω in Eq. (5) and Eq. (6) is used to 
convert the system‘s decision from movement intention 
detection to movement velocity of active prosthetics. 
 

)()()( BPAPBAP =∩
 

)()()()( BAPBPAPBAP ∩−+=∪
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Figure 5. Time Diagram of Movement Intention Detection of sEMG-Based and EEG-Based Systems 
 
 

 
 

Figure 6. Logic Diagrams of (a) AND Method and (b) OR Method 
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Using the results from Kirchner’s experiments [5]. Eq. 
(3) and Eq. (4) can estimate the TPR, FPR, and BA of 
AND and OR methods. The TPR value indicates true 
detection of movement intention before actual movement 
onset, whereas the FPR value indicates false detection 
of movement intention in “rest” condition. Table 1 
shows the comparison of TPR, FPR, and BA from the 
work of Kirchner et al. and the estimated values 
obtained using Eq. (3) and Eq. (4). Based on calculations, 
the TPR, FPR, and BA of AND and OR methods can be 
estimated by using Eq. (3) and Eq. (4) with an error of 
±0.0001. 
 
Derivation of RTA-2 Methodology. The RTA-2 
method is developed based on movement in the human 
body [16]. The brain receives all sensory information or 
stimuli from body sensors. After all sensory information 
are received by the brain, humans deliberates on 
procedural activities to response to stimuli. Some 
examples of this phenomenon can be observed from 
event-related desynchronization/event-related synch-
ronization of brain signals if the response(s) shows 
correlation with body movements [5-18]. Thus, a 
movement starts when an individual thinks or intends to 
move his body until the end of movement. 
 
All movement intentions do not always become body 
movements. Somatosensory motor cortex, pre-motor 
cortex, primary motor cortex, and the thalamus are 
important brain areas for producing body movements 
[16-18]. Although a command signal has been generated 
by primary motor cortex, the signal can reach the 
muscles if the thalamus continually relays this signal. 
Based on this information, humans possess time to think 
(decide) whether to move their body or stay still from 
the time a command signal is generated by the primary 
cortex area until such command signal is relayed to the 
muscles by the thalamus [16]. Based on this phenomenon, 
this paper proposes Eq. (7) to control an active prosthetic: 
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Table 1. Estimated Accuracy from The System Based on 

The Experiments of Kirchner et al [5] 
 

Par 
Input Output 

EEG EMG OR AND OR* AND* 

TPR 0.88 0.86 0.98 0.76 0.98 0.76 

FPR 0.1 0.001 0.1 0.0002 0.1 0.0001 

BA 0.89 0.93 0.94 0.88 0.94 0.88 

*estimation uses Eq. (3) and Eq. (4) 

where DEEG refers to a detection of the EEG-based 
system, DEMG is a detection of the sEMG-based system, 
and z-t is a delay function at t. This delay function 
represents the decision time where a command signal 
originating from the primary cortex area travels to the 
muscles through the thalamus. Eq. (7) covers all 
movements: reflex by DEMG and voluntary movement by 
DEEG · z-t · DEMG. 

 

To analyze and estimate the accuracy of RTA-2 method, 
this paper generates a model from Table 2 for the new 
methodology with the following model feature: (1) high 
accuracy for detecting movement; (2) suppresses 
mistake decisions or detection of rest condition; (3) 
yields short total time response by increasing movement 
velocity. Table 2 illustrates that the output of RTA-2 
method possesses the same value with the detection 
output of the sEMG-based system. The background 
behind this design is attributed to the high TPR, low 
FPR, and high BA of the sEMG-based system. Hence, 
parameters (1) and (2), which are required to generate 
the new method (RTA-2), can be achieved by deriving 
the output of the sEMG-based system. On the other 
hand, Figure 6 is generated as a model of RTA-2 
methodology based on Table 2. 
 
Based on the phenomenon, the detection of EEG-based 
system (DEEG) and that of sEMG-based system (DEMG) 
are independent. Hence, the estimated probability of 
TPR and FPR, P(C) and P(D), are as follows: 
 

)()()()( BPAPBAPCP =∩=  

)())(1()'()( BPAPBAPDP −=∩=
 

 
Table 2.  Possible Output of OR, AND, and RTA-2 Methods 

with DEMG and DEEG as Input 
 

No 
Input Output 

DEMG DEEG OR AND RTA-2 

1 0 0 0 0 0 

2 0 1 1 0 0 

3 1 0 1 0 1 

4 1 1 1 1 1 

 
 

 
 

Figure 6. Logic Diagram of RTA-2 Method 

(7) 

(8) 

(9) 
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Referring to Eq. (4), the estimated probability of TPR 
and FPR of RTA-2 method, )( DCP ∪ , is as follows: 

 
)()()()( DCPDPCPDCP ∩++=∪  

 
As P(C) and P(D) are mutually independent, 

0)''( =∩DCP and Eq. (10) becomes Eq. (11): 

 
)()()( DPCPDCP +=∪  

 
To achieve parameter (3), RTA-2 is designed to map the 
output value of Eq. (7) into three different movement 
velocities. This relation function can be observed in Eq. 
(12). 
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Assuming that the first movement velocity is ω1, the 
second movement velocity is ω2, and ω2 > ω1, then time 
t2, which is required for active prosthetics to reach the 
same desired position with movement velocity ω2, is 
always smaller than the time required by movement 
velocity ω1. This statement can be proven by Eq. (13). 
Using Eq. (7) enables the on/off active prosthetics to 
possess one more state. If the available state is filled 
with a high-speed command, the system will reduce its 
total time response. 
 

12 2

1
tt 







=
ω
ω

 

 

3. Results and Discussion 
 
Calculating the estimated accuracy from the three methods 
(AND, OR, and RTA-2) by using the experimental results 
from the work of Kirchner et al., we observe that RTA-
2 features the same accuracy (TPR and FPR) and BA 
with sEMG-based systems. The BA of sEMG-based 
system and RTA-2 is higher than that of the AND 
method but lower than that of the OR method. Although 
the RTA-2 method yields a lower BA than OR method, 
the FPR of RTA-2 is lower than that of the OR method. 
These values imply that the RTA-2 method yields lower 
false detection in rest condition than OR. Based on this 
observation, the RTA-2 method presents higher 
probability to be implemented than the OR method. 
 
Comparing the performances of RTA-2 method with 
AND method, we note that the RTA-2 exhibits higher 
FPR than AND method (difference value of 0.0009). 
Although AND method features better FPR value 
parameter, RTA-2 yields higher TPR and BA values. 

These results are also proven by the results of OR, 
AND, and RTA-2 methods in Tables 4, 5, and 6, 
respectively. 
 
In “rest” interval, as illustrated in Table 3, the estimated 
detection of movement intention forms the relation 
P(‘OR’) ≤ P(‘RTA-2’) ≤ P(‘AND’). By increasing the 
value of P(A) and/or P(B), the estimated detection of 
movement intention is consistently P(‘OR’) ≤ P(‘RTA-
2’) ≤ P(‘AND’). Including all input possibilities, the 
estimated detection of movement intention from all 
methods is constantly P(‘AND’) ≤ P(‘RTA-2’) = P(A) ≤ 
P(B) ≤ P(‘OR’). As this detection is on “rest” interval, 
then this estimated detection of movement intention is 
FPR. 
 
In transition interval, Table 5 shows that the estimated 
detection of movement intention features the relation 
P(‘OR’) ≤ P(‘RTA-2’) ≤ P(‘AND’). By increasing the 
value of P(A) and/or P(B), the estimated detection of 
movement intention is consistently P(‘OR’) ≤ P(‘RTA-
2’) ≤ P(‘AND’). Comparing with all possible methods 
that could be implemented in active prosthetics, the 
estimated detection of movement intention of all 
methods is P(‘AND’) ≤ P(‘RTA-2’) = P(A) ≤ P(B) ≤ 
P(‘OR’). From Eq. (7), this transition interval defines 
the delay function. 
 
In pre-movement interval, Table 6 shows that the 
estimated detection of movement intention presents the 
relation P(‘OR’) ≥ P(‘RTA-2’) ≥ P(‘AND’). By 
increasing the value of P(A) and/or P(B) the estimated 
detection of movement intention for the method is 
invariably P(‘OR’) ≥ P(‘RTA-2’) ≥ P(‘AND’). 
Returning to all possible methods, the estimated 
detection of movement intention methods manifests the 
correlation P(‘OR’) ≥ P(‘RTA-2’) = P(A) ≥ P(B) ≥ 
P(‘AND’). From the point of view of the RTA-2 
method, the following are deduced: 1) If the system 
detects movement intention from the EEG-based system 
in the transition time interval and EMG-based system in 
the pre-movement time interval, then the prosthetics 
will move with velocity ω2. 2) If the system detects 
movement intention from EEG-based systems in 
transition time interval but not movement intention from 
EMG-based systems in pre-movement time interval, 
then the prosthetics will move with velocity ω. 
 
Table 3.  Estimated TPR, FPR, and BA by Using Kirchner’s 

Results 
 

Par 
Input Output 

EEG EMG OR* AND* RTA-2* 

TPR 0.88 0.86 0.98 0.76 0.86 

FPR 0.1 0.001 0.1 0.0001 0.001 

BA 0.89 0.93 0.94 0.88 0.93 

*estimated 

(10) 

(11) 

(13) 
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Table 7 illustrates the possibilities of velocity output 
from the RTA-2 method. We can observe that the RTA-
2 method fulfills all requirements needed to shorten the 
total time response. The RTA-2 method shows 
possibility to move active prosthetics depending on the 
decision of sEMG and EEG signals with high 
accuracies, low false movement detection in “rest” 
condition, and it could move rapidly by increasing the 
movement velocity of active prosthetics.  
 

One problem arises from the RTA-2 method. If the EEG 
system can detect every movement intention that occurs 
0–2 s before the onset of movement, [5-8] the subject 
cannot select the velocity command for active 
prosthetics (ω1 or ω2). By using motor imagery approach 
before doing voluntary movement onset might 
overcome this velocity problem. Hence, the delay time 
parameter (z-1) in Eq. (7) is determined by the time 
where motor imagery occurs statistically. Figure 7 
illustrates this delay function phenomenon (gray area). 

 

Table 4. Estimated Detection of Movement Intention of OR, AND, and RTA-2 Method in Rest Interval (t < ta) 
 

No P(A) 

P(B) 

0.1000 0.2000 0.3000 

OR AND RTA-2 OR AND RTA-2 OR AND RTA-2 

1 0.0001 0.1001 0.0000 0.0001 0.2001 0.0000 0.0001 0.3001 0.0000 0.0001 

2 0.0003 0.1003 0.0000 0.0003 0.2002 0.0001 0.0003 0.3002 0.0001 0.0003 

3 0.0005 0.1005 0.0001 0.0005 0.2004 0.0001 0.0005 0.3004 0.0002 0.0005 

4 0.0008 0.1007 0.0001 0.0008 0.2006 0.0002 0.0008 0.3006 0.0002 0.0008 

5 0.0010 0.1009 0.0001 0.0010 0.2008 0.0002 0.0010 0.3007 0.0003 0.0010 

 

 

Table 5. Estimated Detection of Movement Intention of OR, AND, and RTA-2 Method in Transition Interval (ta ≤ t < tb) 
 

No P(A) 

P(B) 

0.6000 0.7000 0.8000 

OR AND RTA-2 OR AND RTA-2 OR AND RTA-2 

1 0.0001 0.6000 0.0001 0.0001 0.7000 0.0001 0.0001 0.8000 0.0001 0.0001 

2 0.0003 0.6001 0.0002 0.0003 0.7001 0.0002 0.0003 0.8001 0.0002 0.0003 

3 0.0005 0.6002 0.0003 0.0005 0.7002 0.0003 0.0005 0.8001 0.0004 0.0005 

4 0.0008 0.6003 0.0005 0.0008 0.7002 0.0005 0.0008 0.8002 0.0006 0.0008 

5 0.0010 0.6004 0.0006 0.0010 0.7003 0.0007 0.0010 0.8002 0.0008 0.0010 

 

 

Table 6. Estimated Detection of Movement Intention of OR, AND, and RTA-2 Method in Pre-Movement Interval (t ≥ tb) 
 

No P(A) 

P(B) 

0.6000 0.7000 0.8000 

OR AND RTA-2 OR AND RTA-2 OR AND RTA-2 

1 0.8000 0.9200 0.4800 0.8000 0.9400 0.5600 0.8000 0.9600 0.6400 0.8000 

2 0.8500 0.9400 0.5100 0.8500 0.9550 0.5950 0.8500 0.9700 0.6800 0.8500 

3 0.9000 0.9600 0.5400 0.9000 0.9700 0.6300 0.9000 0.9800 0.7200 0.9000 

4 0.9500 0.9800 0.5700 0.9500 0.9850 0.6650 0.9500 0.9900 0.7600 0.9500 

5 1.0000 1.0000 0.6000 1.0000 1.0000 0.7000 1.0000 1.0000 0.8000 1.0000 
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Table 7. Probability of RTA-2 Method to Generate Movement Velocity ω1 and ω2 in Pre-Movement Interval (0 ≥ t ≥ tb) 
 

No P(A) 

P(B) 

0.6000 0.7000 0.8000 

0 ω1 ω2 0 ω1 ω2 0 ω1 ω2 

1 0.8000 0.2000 0.3200 0.4800 0.2000 0.2400 0.5600 0.2000 0.1600 0.6400 

2 0.8500 0.1500 0.3400 0.5100 0.1500 0.2550 0.5950 0.1500 0.1700 0.6800 

3 0.9000 0.1000 0.3600 0.5400 0.1000 0.2700 0.6300 0.1000 0.1800 0.7200 

4 0.9500 0.0500 0.3800 0.5700 0.0500 0.2850 0.6650 0.0500 0.1900 0.7600 

5 1.0000 0.0000 0.4000 0.6000 0.0000 0.3000 0.7000 0.0000 0.2000 0.8000 

 
 

 
 

Figure 7. Time Diagram of RTA-2 Method with Motor Imagery 
 
 
4. Conclusions 
 
Based on the analysis above, this paper shows another 
possibility to control active prosthetics using different 
movement velocities based on the integration of sEMG 
and EEG signals. The RTA-2 method shows equal 
performance with sEMG-based systems. Comparing 
with the EEG-based system, the RTA-2 method exhibits 
better performance by yielding lower FPR and higher 
BA. On the other hand, comparing RTA-2 method with 
AND method, RTA-2 shows higher TPR and BA and 
lower FPR. Comparing with OR method, RTA-2 presents 
lower FPR, higher FPR, and lower BA. Considering that 
EMG-based system has been implemented and passed 
safety considerations, [19] the RTA-2 method can also 
be implemented as it shows an equal performance (TPR, 
FPR, and BA) with the EMG-based system. The RTA-2 
method can reduce total time response by rapidly 
moving the active prosthetic. This assumption is 
attributed to the capability of RTA-2 method to make 
other alternative commands to the active prosthetics. 
From the analysis, RTA-2 performs one more alternative 
command into on/off active prosthetics. If this command 
is used for faster movement velocity command, the 
active prosthetics can reach the desired position faster or 
require a shorter total time response. 

The RTA-2 method can also be implemented in 
proportional active prosthetics. As movement velocity 
command of active prosthetics uses the threshold 
method, [12-13] hence, by integrating with the BCI 
system, the active prosthetics will feature a xN2 level 
of movement velocity command (with N existing at the 
level of active prosthetics based on sEMG signals). 
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