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Abstract

In heterogeneous networks (HetNets) where femtdizsde stations (FBSs) are deployed within the radierage of
macrocell base stations (MBSs) to increase netwaplacity, co-channel interference limits overafiteyn performance
with universal frequency reuse. This paper inveséig new distributed downlink discrete power cdnsaheme for
FBSs in HetNets with FBSs cooperation. The objectif the proposed power control scheme is to maentie

number of simultaneous FBSs transmissions in desimgnsmission wireless channel where each FB8ldsved to

transmit only if the signal-to-interference-noisdia (SINR) requirements for both FBSs and MBS sisge satisfied.
We apply a stochastic learning automata techniqueBSs where each FBS is treated as a learningnatbo and
maintains a probability vector to select its disersansmit power. During the learning processhe@BS adjusts its
probability vector based on the feedback from FQ\At indicates the number of FBSs transmissions ¢hat be

supported under the SINR requirement constrainBElifs and MUESs. Simulation results show the prog@dgorithm

can achieve more than twice the number of simuttase-BS transmissions achieved by existing schemeke

literature.

Abstrak

Kontrol Daya Terpisah dalam Jaringan Heterogen.Dalam jaringan heterogen (HetNets) di mana Béa&tocell
(FBS) dikerahkan dalam cakupan radio Bi&crocell (MBS) untuk meningkatkan kapasitas jaringan, fetensi
saluran bersamad-channel) membatasi kinerja sistem secara keseluruhan demgaggunakan kembali frekuensi
universal. Makalah ini menyelidiki skema kontrolydaterpisahdownlink yang baru didistribusikan untuk FBS di
HetNets dengan kerjasama sejumlah FBS. Tujuan dkeima kontrol listrik yang diusulkan adalah untuk
memaksimalkan jumlah transmisi FBS simultan daleaturan nirkabel transmisi tunggal di mana setiapSFB
diperbolehkan untuk mengirimkan hanya jika persiaraasiosignal-to-interference-noise (SINR) untuk kedua FBS
dan pengguna MBS terpenuhi. Kami menerapkan tedtodhastic learning automata untuk FBS, di mana setiap FBS
diperlakukan sebagégarning automaton dan mempertahankan vektor probabilitas untuk mbmdya pancar terpisah.
Selama proses belajar, masing-masing FBS menyesuaéktor probabilitas berdasarkan umpan balik E@\WV yang
menunjukkan jumlah transmisi FBS yang dapat didgkdnbawah kendala persyaratan SINR dari FUE darEMU
Hasil simulasi menunjukkan algoritma yang diusulldapat mencapai lebih dari dua kali jumlah transrABS
simultan yang dicapai berbagai skema lain yangdadkm literatur.

Keywords: heterogeneous networks, wireless cellular networks

1. Introduction FBSs are low-power, low-cost access points. They ar
installed at the indoor premises and connect tahilen
Recent studies have shown that in cellular networks operator’s network via residential digital subseritine

about 60% of all voice calls and 90% of all datwvises (DSL) or cable broadband connections. By using FBSs
take place in indoor environments [1]. However, tlue indoor users can receive better signal-to-noisegatue
poor indoor propagation conditions caused by higi w  to the close proximity between transmitters aneixegs.
penetration loss, it is difficult for conventionabanocell FBSs are usually installed by customers to incréfasie
base stations (MBS) to provide high-quality datms- own data transmission qualities. Thus, they areemor
missions for customers in indoor environment. Tdresls likely to operate in closed access (CA) mode wioetyg

this problem, femtocell base stations (FBS) [2] hav  authorized users can have access to them [3]. As a
been deployed in indoor environments. result, it is very likely that FBSs will have ovaplping
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radio coverage within existing MBSs. Given the sitgr

of the frequency bands, it is preferable for FB&d a
MBSs to use the same spectrum band. This resuti@in
types of interference: the cross-tier interferebegveen
femtocell and macrocell; and intra-tier interferenc
between neighboring femtocells. In the literatutes
type of networks is referred to as a heterogeneetvgork
(HetNet) [4]. These interferences will greatly cedg

the network performance when FBSs are densely
deployed [5].

Consequently, interference mitigation is a majalleinge

for HetNets. In HetNet where base stations useainee
spectrum band, power control has been proved to be
efficient to mitigate co-channel interferences [6-9]
Downlink adaptive power level setting (APLS) scheme
are proposed in [6,7] where each FBS adjustsatsinit
power so that the MBS’ scheduled users (MUES) ce@tm
its minimum received signal-to-interference-noistior
(SINR) requirement. Unfortunately, without consttai

on the minimum received SINR requirements for FBSs’
scheduled users (FUEs), the schemes in [6,7] lead t
unnecessary transmissions and increase interference
This is because FBSs keep transmitting even ththegh
received SINRs at FUEs are lower than their minimum
received SINR requirements. In [8,9], the authors
propose distributed power control algorithms that &
maximise system capacity subject to satisfy minimum
received SINR requirements for both MBS and FBSs.
Here, the power control optimisation for FBSs are
separated into two optimisation processes. In tts fi
process, FBSs' transmit powers are optimised #seif
MUEs do not exist. In the second one, a different
algorithm is then used to reduce FBSs transmit powe
until both FUEs and MUEs can be satisfied. Although
the first process has been shown to be optimale tiser
no guarantee that power control solution that combi
both processes are also optimal. As it will be sidater

in the paper, this indeed lead to a non-optimal grow
solution. In addition, none of the existing scheljt9]
consider cooperation among base stations (BSs)hwhic
has been shown to improve network performance
significantly [11].

In this paper, we propose a new distributed downlin
power control scheme for HetNets. We formulatetée
processes used in [8,9] as a single optimisationtion.

This is done by formulating the global optimisation
function that maximises the number of FBSs transions

in a single HetNets wireless channel with FBSsdnaih
power as its variables and minimum received SINR
requirements for FUEs and MUEs as its constraiiis.
then decompose this maximization problem into an
individual FBS power control problem, solvable at a
FBS level. We assume FBSs and MBS can communicate
with a femtocell gateway (FGW) through internetiiesuil
connections [2]. A power control scheme for the BBS
is then proposed based on the stochastic learning
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automaton technique [12]. Specifically, each FB&sted
as a learning automaton and maintains a probability
vector to select its transmit power.

During the learning process, each FBS adjusts its
probability vector based on the interference infation,
referred to as reward, from the FGW. The reward
indicates the number of FBSs’ transmissions thathea
supported under the SINR requirement constraints of
FUEs and MUEs. Simulation results show the proposed
algorithm can achieve more than twice the number of
simultaneous FBSs’ transmissions achieved by exgsti
APLS [7] and MDPC [9] algorithms. Our first contrtimn

in this paper is that an FBS only transmits iftiemsmit
power can satisfy the minimum received SINR require
ment of its user, while guaranteeing the minimuoenred
SINR requirements of MUESs. This eliminates unnemgss
transmissions in [6-9] where FBSs are still transng
even though the received SINRs of FUEs are very low
Secondly, unlike the schemes in [6-9] where eacB FB
optimizes its transmit power individually, the posed
scheme exploits FBSs cooperation where the SINR
satisfaction information about the FBSs’ transnoigsi
are propagated to all FBSs through FGW. This resalt

a larger number of FBSs’ transmissions that caisfgat
SINR requirements of FUEs and MUEs as compared to
the schemes in [6-9]. Thirdly, unlike schemes 06
where transmit powers in HetNets are assumed to be
continuous, we consider a discrete transmit poweer s
which is commonly used in real digital cellular yas
[13].

The reminder of this paper is organized as follows:
Section Il presents the system model. The optiroalgp
control problem is formulated in Section Ill. SectilV
describes the proposed stochastic learning baseet#
power control algorithm. Section V discusses timeusi
lation results. Finally, Section VI concludes tphaper.

2. Methods

We consider a heterogenous network as shown irrd-igu
1. MBS 0 is located at the centre of a macroceillisg
an area C with a radius 8. N FBSs denoted by<=
N,N = {1, 2, - - -, N} are deployed within C. FBSs
operate in CA mode and use the same spectrum band

c—
Intra—tier interference

—»
Inter-tier interference

Femtacael 1

4

MUE

&

FUE

Figure 1. System Model for a Heterogenous Network
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with MBS 0. MBS and FBSs can communicate via a FGW
through Internet-based IP backhaul [2]. Both MUEd a
FUEs are randomly located within their serving base
stations’ coverage areas. We further assume ttdt ea
base station serves one user at a transmission(aslot
transmission slot may refer to a time resource oher
spectrum band).

We assume that during a transmission slot, MBS 0
determines its transmit power g0 based on its own
power control policy. There are L different transmi
powers for FBSs with the maximum transmit power
gmax and the minimum transmit power 0, defined as a
set Q = {0,gmaxL-1, 2xgmax L-1, - - - , gmax}. $hu
each FBS i, i€ N chooses its transmit power gi from
Q. By letting MUE 0 and FUE i be the scheduled user
for MBS 0 and FBS i, i€ N, the received SINR of
MUE 0 can be expressed as

. go.090
n = —
o?+ Z Go.:4: (1)
ieN
and received SINR of FUE i,& {1, - - - N} as
e o gi,:4:
4 a? T 4040 i Z Gi 54 2)
JEN j#

wherec?2 is the background noise power that is assumed
to be the same for all users, and gi,js D j < N is the
channel gain from BS j to UE i. We further defirieas
the minimum received SINR requirement of UE ki

{0, 1, - ,N} and define the following indicator
function for each UE,
| :{1, yi 2T, 3)
i 0, otherwise

where li indicates whether the received SINR at iUE
satisfies its minimum SINR requirement or not. By
using (3), the number of FBSs’ transmissions that
achieve the minimum SINR requirements at FUEs én th
presence of MBS'’s transmission, Ns can then beemrit

as,
N

Ng=1o 1,
i=1

Note that Ns > 0 only when the received SINR of MUE
0 and at least one scheduled FUE are greater than o
equal to their minimum received SINR requirements.
By using (4) and letting q = [g1, 92, - - - , qN] the
selected transmit power vector of all FBSs, we ttem

(4)
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write the optimisation function for the power caitr
problem as follows,

maxN
q

(5a)

S

st. qUOQLION (5b)

where constraint (5b) indicates the choices ofdimah
power for FBSs, which defined by Q = {0, gmax L-1,
2xgmax L-1, - - - , gmax}. Note that the glob&iropl
solution for (5) can be obtained by using an extiagis
search over all the possible transmit power com-
binations for all FBSs and selecting the transroiver
combination that gives the maximum of (5). Unfoettaty,

the exhaustive search scheme requires high corignatht
complexity.

Stochastic learning based discrete power controln

this section, we propose a stochastic learningnigcie
based solution for (5) where each FBS is regarded a
learning automata that adjusts its own transmitgrdyy
using the reward containing interference informatio
obtained from FGW. We will describe the basic of
stochastic learning approach and how to use it to
develop the proposed discrete power control algarit

Preliminaries of stochastic learning.Stochastic learning
automata are adaptive decision making devicesatteat
capable of learning the desirable actions through
interactions with the environment [12]. A stochasti
learning automaton (SLA) can be represented byl tu
{A, p, u, T} where A ={al, a2, - - - , am} is aifm
action set of all possible actions a SLA can tak) =
[P1l(k), p2(k), - - - , pm(K)], k =1, 2, - - - letaction
probability vector at step k where pi(k) represethis
probability for SLA to choose action & A and m P
i=1 pi = 1. u(k) is the reward a SLA will get byktag
action ai, which should satisfy 0 < u(k) < 1. Highe
reward represents better action choice for a SLAs T
the learning scheme used by a SLA to update iteract
probability vector, based on its current actionbaimlity
vector, its action, and the reward received. Figusbows
the interactions between a SLA and the environment.
Specifically, the interaction at each step k coagi§the
following sequence.

{ A,p,u, T}

A

Learning Automaton

Act
a(k)

Environment ]4—

Figure 2. Learning Automaton

on

= A

Reward

uk) € (©,1)
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In general, a learning scheme is a function whm loe
represented as

p(k+1) =T (p(k),a(k),u(k))

e The SLA selects an action a( A based on p(k),
here Prob[a(k) = ai] = pi(k).

» Environment gives a reward u(k) as a respongédo
action.

» Based on its action a(k) and the reward u(k)iveck
SLA updates its action probability vector p(k) into
p(k+1) under the learning scheme T.

The process is repeated until p converges. Thetige
of a learning automaton is to find the optimal attio
which incurs the highest reward after several fiens.
There are several learning schemes proposed in the
literature, with which the learning automata can
asymptotically learn the optimal action, such aedir
reward-penalty (LR-P) schemes, linear reward-ioacti
(LR-1) schemes and some other non-linear schemes

to adjust their transmit powers in order to achidve
biggest Ns which incurs the highest reward. The
maximum reward can be obtained when the SINR
targets of both MUE 0 and all the scheduled FUESs ca
be met, where Ns = N. 4) Learning scheme: Learning
scheme is an algorithm used by FBSs to update their
probability vectors pi(k). Here, we choose thedwaling
scheme:

p(k+D=p )+ (k)(g -p((K) @)

where 0 <0 < 1 is the learning rate, eli is a unit vector
of L dimension with lith component be unity, which
indicates FBS i chooses the lith transmit powenmfi@.
This learning scheme is known as linear rewardtiaac
LR-I scheme [12]. LR~ is a well-known updating sofre

in the stochastic learning theory. It has been gmae be
g-optimal with a strong convergence property in 22,
respectively. The proposed stochastic learningcbdise
crete power control algorithm is described in Altion 1.

[17,18] (see [12] for a survey).

Algorithm 1: Stochastic Learning based Discrete &ow
Control Algorithm (SL-DPC)

Stochastic learning based discrete power control
algorithm. In our system, we regard each FBS as
stochastic learning automaton. In the following, dach
FBS i, Vi € N, we define its action set, probability
vector, learning scheme and reward function. 1)ofkct
set: An action for a FBS is a transmission using a
selected transmit power. Here we use the selected
transmit power gi= Q to represent an action ai of FBS
i. There are L available transmit powers in powetrG.

2) Probability vector: Corresponding to the actimst,

the probability vector at step k is defined as: )ik
(pil(k), pi2(k), - - -, piL(k)), where pij(K) regsents the
probability for FBS i to choose the jth transmityer at
step k. 3) Reward: Based on our optimization object

1: Set the initial transmit power selection proligbi
vector pi(0) for each FBS i. Let pil(0) = 1//i € N, 1
<|<L; 2: At every step k, each FBS i first chooses
transmit power gi(k) according to its transmit pov
selection probability vector pi(k), then transmitsta to
FUE i with the selected power qi(k); 3: Both MBSdan
FBSs send their indicators 1i,<0i < N (3) to the FGW,
then each FBS i obtains reward ui(k) specified by| (6
from the FGW; 4: Each FBS updates its transmit powe
selection probability vector according to the schem
specified in (7); 5: IfVi € N, there exists a transmit
power selection probability pil(k), £ | < L which is
approaching one, e.g., larger than 0.99 [22], thtep;
Otherwise, go to step 2);

its
e

defined in (5), the reward function for FBS i atpskeis
defined as,

ui(k):NS/N (6)

Here, Ns is the number of FBSs’ transmissions ¢hat

be supported under the SINR requirement constraints
FUEs and MUEs, as defined in (4). In each step,dase
on the received transmit powers from all base atati
MUE 0 and FUE i, i€ N will calculate and send their li
(3) to FGW via MBS 0 and FBS i respectively. Thiea t
FGW calculates Ns and normalizes it by N and
broadcasts ui(k) to all FBSs. The objective ofaning
automaton is to find the optimal action which inctims
highest reward. When FBSs can access the same
wireless channel with MBS, where ™ 10 = 1, reward
function is a monotonically increasing function tbie
number of FBSs' transmissions with their minimum
SINR requirements satisfied. This will encourage §BS

Makara J. Technol.

Convergence property of SL-DPC.We now discuss
the convergence characteristic of the proposed powe
control scheme. We use the fact that a learningnaata
system with common payoff and LR-I scheme as in (7)
always converges to a pure strategy Nash equitibriu
(Refer to Theorem 3.1 and 4.1 in [22] for proofy.dur
system, based on (6) and (7), at step k, FBSs will
receive the same reward value from FGW, i.e., ui(k)
uj(k), Vi, j € N and employ LR-I scheme. FBSs act as
a learning automata system with a common payoff and
LR-I scheme. Thus, the proposed scheme will always
converge to a pure strategy Nash equilibrium whsch
also a local optimal solution for (5).

3. Results and Discussion
In this section, we evaluate the system performanice

the proposed SL-DPC algorithm and compares its
system performance with the global optimal exhaesti

April 2016 | Vol. 20| No. 1



search scheme, the APLS scheme [7] and MDPC
scheme [9], where FBSs control their transmit pawer
without any cooperation and without guaranteeing th
minimum received SINR requirements for FUEs.

Simulation setup. In this paper, we consider a HetNet
deployed as shown in Figure 3. One macrocell withe
sectors is considered. A femtocell block is deptbie
each sector. The dual stripe model [14] is adopted

Discrete Power Control in Heterogeneous Networks 35

algorithm. Here we consider there are N = 10 FB®#k a
L = 4 different transmit powers for each FBS, where

_J Gmax 2% Omax
=J0,—mex <7 Hmax
e { 3 3

channel and user location scenario here.

,qm}- We assume a static

Table 1. Simulation Parameters

represent the dense-urban multi-femtocell deploymen

environment. As illustrated in Figure 4, a femtbcel
block is of size 120 m x 70 m and includes two buiig
(we assume each building has only one floor). Imeac
building, there are 2 x 10 apartments, which areiz#

10 m x 10 m. Thus, there are 40 apartments in ekblo
A 10m width street lies between two buildings.

We assume the distance between Femtocell blocks in
different sectors is sufficiently large so that ithiea-tier
interference between blocks can be neglected. én th
simulation we consider a femtocell block whose kloc
centre is at a distance of 200 m from MBS 0. N(MO)

FBSs are deployed in this block where each FBS is
installed at the centre of an apartment. FUEs are
randomly generated in apartments where a FBS is
installed, while MUEs are randomly dropped in the
block. Each base station transmits to a user in its
coverage based on its own scheduling policy (e.g.,
proportional fair scheme). We assume the minimum
received SINR requirement for FUEs and MUE are
20dB and 12.5dB respectively. We adopt the approach
in [23] for modelling path loss in a dense-urbanltmu
femtocell environment. The step size for learnicigesne

is set to 0.1 according to [22], which can achigeed
balance between the system performance and learning
rate. The system parameters are summarized in Table
[8,9].

Convergence of the SL-DPC algorithmWe first show
the convergence property of the proposed SL-DPC

Femtocal 1

Figure 3. Simulation System Model with Dual Strip Model

Makara J. Technol.

Parameters Value
Macrocell radius (Rm) 1000m
System bandwidth 10 MHz
Carrier frequency (f) 2.0 GHz
Transmit power of macrocell (q0) 43 dBm
Maximum transmit power of femtocell 13 dBm
(gmax) 5dB
Inner wall penetration loss factor (Liw) 10 dB
Outer wall penetration loss factor (Low) refer to [23]
Path loss model 12.5dB
Minimum received SINR for MUE OIQ) 20 dB
Minimum received SINR for FUE i[{) -174 dBm/Hz
White noise power density ©0,1)
Learning step sized)
& MUE foir iy
@ FlE — [Ij"""': a]i
& FES — nner wa
[mn
10m} ':j =] # lq B
l* o bE opnl
1 0m L .
| :li -
% | e a] [wlm EJ |

1 0m

Figure 4. Dual Strip Model for Femtocell Block

—— power
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Transmil power selection probabililies

=]
i

=]

[=]
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=)

1500

Figure 5. Evolution of the Transmit Power Selection
Probability of an Arbitrary FBS. N = 10, L = 4,
60=0.1
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Figure 5 shows the evolution of the transmit power
selection probability of one of the FBSs, using the
proposed algorithm under given simulation scenario.
We can see that the transmit power selection pitityab
vector for the FBS evolves from the initial valyé#4,

1/4, 1/4, 1/4} to {0, O, 1, 0} in about 800 iteratis.

2xqmax .
Thus, this FBS finally selects power 5 with

probability one. Similar observations are obserf@d
other FBSs. This indicates that the transmit povedrs
FBSs converge to fixed values which indicate a stabl
solution for (5).

Figure 6 shows the evolution of the reward valyef@¢6
FBSs during the calculation process of the proposed
algorithm. We can see that the common reward for
FBSs also converges to a specific value of 0.5 wisich
also a NE point according to the analysis of the
convergence property in Section IV.

Performance comparison.Figure 7 shows the average
number of FBSs' transmissions with the minimum
SINR constraints satisfied of the proposed SL-DPC,
APLS and MDPC schemes as the number of FBSs
increases over 1000 trials where we vary the lonatif
FBSs and MBS 0 users for each trial. Figure 7 shows
that the proposed SL-DPC algorithm outperforms the
APLS and MDPC schemes. The performance gain of
the proposed algorithm over APLS and MDPC schemes
is higher as with the number of FBSs increases.Whe
there are 30 FBSs that want to transmit at the damee

in the area, the number of active FBSs of the mego
algorithm is more than twice the numbers of APL8 an
MDPC schemes. This is because using the proposed
scheme FBSs take the number of FBSs’ transmissions
that can be supported into consideration when setgc
their transmit powers. In order to achieve a higher
number, some FBSs will choose to shut down. This
reduces both the inter-tier and intra-tier intezferes,

Achieved reward

0.5F

04r

0.3

Reward of FBSs

0.2f

(R4 3

1 L .
[4] 500 1000
Iteration Index

1500

Figure 6. Evolution of the Reward for FBSs, N = 10, = 4,
0=0.1
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—s— AP S

—§— MDPC

12} —#—Proposed SL-DPC
—8— Exhaustive Search

Average number ol active FBSs

15 20 25 30
Mumber of total FBSs (N}

Figure 7. Average Number of Satisfied FBSs’ Transmigms
Comparison. L=4,60=0.1

thus more FBSs can meet their users’ minimum SINR
requirements. However, in MDPC and ALPS schemes,
FBSs maximize their own rates and adjust theirsimat
powers without guaranteeing the minimum SINR
requirements of FUEs. That means those FBSs timat ca
not satisfy minimum SINR requirements will still
transmit to their users. That results in highechannel
interference in the system and reduces the number o
FBSs’ transmissions whose SINR requirements can be
satisfied. We also compare the number of simultasieou
FBSs’ transmissions that can be supported by SL-DPC
algorithm with the exhaustive search scheme. Asvaho

in Figure 7, the performance gap between exhaustive
search and the SL-DPC algorithm becomes larger with
the number of deployed FBSs increases.

This is because in the exhaustive search scherae, th
central controller knows all the system parameters
including channel states, number of FBSs and their
available transmit powers. It finds the optimal solu

by trying all the possible transmit power combioas.
While using the SL-DPC scheme FBSs try possible
transmit powers based on their probability vectefsich

are evolved in a try-error-learn mode. There are LN
different transmit power combinations, with N irgses,
the number of combinations increases dramaticilly,
harder for FBSs to try all the combinations, theg a
more likely to converge to a local optimal poinstead

of converging to the global optimal.

4. Conclusion

In this paper, we investigate a downlink discrebever
allocation problem in HetNets with an objective of
maximizing the number of active FBSs subject to the
minimum received SINR requirements of the scheduled
HetNet users. We propose a power allocation scheme
based on stochastic learning automata techniqueewhe
each FBS is treated as a learning automaton and

April 2016 | Vol. 20| No. 1



maintains a probability vector to select its actidine
proposed scheme exploits the information about the
number of FBSs that can satisfy the minimum reckive
SINR requirements for their respective users toatgpd
the probability vector for selecting FBS transnoiyer.
Simulation results showed that the proposed sclwme
achieve a significantly higher number of active FBSs
compared to other schemes in the literature.
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