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Abstract 
 

In heterogeneous networks (HetNets) where femtocell base stations (FBSs) are deployed within the radio coverage of 
macrocell base stations (MBSs) to increase network capacity, co-channel interference limits overall system performance 
with universal frequency reuse. This paper investigates new distributed downlink discrete power control scheme for 
FBSs in HetNets with FBSs cooperation. The objective of the proposed power control scheme is to maximize the 
number of simultaneous FBSs transmissions in a single transmission wireless channel where each FBS is allowed to 
transmit only if the signal-to-interference-noise ratio (SINR) requirements for both FBSs and MBS users are satisfied. 
We apply a stochastic learning automata technique to FBSs where each FBS is treated as a learning automaton and 
maintains a probability vector to select its discrete transmit power. During the learning process, each FBS adjusts its 
probability vector based on the feedback from FGW that indicates the number of FBSs transmissions that can be 
supported under the SINR requirement constraints of FUEs and MUEs. Simulation results show the proposed algorithm 
can achieve more than twice the number of simultaneous FBS transmissions achieved by existing schemes in the 
literature. 

 
 

Abstrak 
 

Kontrol Daya Terpisah dalam Jaringan Heterogen. Dalam jaringan heterogen (HetNets) di mana BTS femtocell 
(FBS) dikerahkan dalam cakupan radio BTS macrocell (MBS) untuk meningkatkan kapasitas jaringan, interferensi 
saluran bersama (co-channel) membatasi kinerja sistem secara keseluruhan dengan menggunakan kembali frekuensi 
universal. Makalah ini menyelidiki skema kontrol daya terpisah downlink yang baru didistribusikan untuk FBS di 
HetNets dengan kerjasama sejumlah FBS. Tujuan dari skema kontrol listrik yang diusulkan adalah untuk 
memaksimalkan jumlah transmisi FBS simultan dalam saluran nirkabel transmisi tunggal di mana setiap FBS 
diperbolehkan untuk mengirimkan hanya jika persyaratan rasio signal-to-interference-noise (SINR) untuk kedua FBS 
dan pengguna MBS terpenuhi. Kami menerapkan teknik stochastic learning automata untuk FBS, di mana setiap FBS 
diperlakukan sebagai learning automaton dan mempertahankan vektor probabilitas untuk memilih daya pancar terpisah. 
Selama proses belajar, masing-masing FBS menyesuaikan vektor probabilitas berdasarkan umpan balik dari FGW yang 
menunjukkan jumlah transmisi FBS yang dapat didukung di bawah kendala persyaratan SINR dari FUE dan MUE. 
Hasil simulasi menunjukkan algoritma yang diusulkan dapat mencapai lebih dari dua kali jumlah transmisi FBS 
simultan yang dicapai berbagai skema lain yang ada dalam literatur. 
 
Keywords: heterogeneous networks, wireless cellular networks  
 
 
 
1. Introduction 
 
Recent studies have shown that in cellular networks 
about 60% of all voice calls and 90% of all data services 
take place in indoor environments [1]. However, due to 
poor indoor propagation conditions caused by high wall 
penetration loss, it is difficult for conventional macrocell 
base stations (MBS) to provide high-quality data trans-
missions for customers in indoor environment. To address 
this problem, femtocell base stations (FBS) [2] have 
been deployed in indoor environments. 

FBSs are low-power, low-cost access points. They are 
installed at the indoor premises and connect to a mobile 
operator’s network via residential digital subscriber line 
(DSL) or cable broadband connections. By using FBSs, 
indoor users can receive better signal-to-noise ratios due 
to the close proximity between transmitters and receivers. 
FBSs are usually installed by customers to increase their 
own data transmission qualities. Thus, they are more 
likely to operate in closed access (CA) mode where only 
authorized users can have access to them [3]. As a 
result, it is very likely that FBSs will have overlapping 
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radio coverage within existing MBSs. Given the scarcity 
of the frequency bands, it is preferable for FBSs and 
MBSs to use the same spectrum band. This results in two 
types of interference: the cross-tier interference between 
femtocell and macrocell; and intra-tier interference 
between neighboring femtocells. In the literature, this 
type of networks is referred to as a heterogeneous network 
(HetNet) [4]. These interferences will greatly degrade 
the network performance when FBSs are densely 
deployed [5]. 
 
Consequently, interference mitigation is a major challenge 
for HetNets. In HetNet where base stations use the same 
spectrum band, power control has been proved to be 
efficient to mitigate co-channel interferences [6-9]. 
Downlink adaptive power level setting (APLS) schemes 
are proposed in [6,7] where each FBS adjusts its transmit 
power so that the MBS’ scheduled users (MUEs) can meet 
its minimum received signal-to-interference-noise ratio 
(SINR) requirement. Unfortunately, without constraints 
on the minimum received SINR requirements for FBSs’ 
scheduled users (FUEs), the schemes in [6,7] lead to 
unnecessary transmissions and increase interference. 
This is because FBSs keep transmitting even though the 
received SINRs at FUEs are lower than their minimum 
received SINR requirements. In [8,9], the authors 
propose distributed power control algorithms that aim to 
maximise system capacity subject to satisfy minimum 
received SINR requirements for both MBS and FBSs. 
Here, the power control optimisation for FBSs are 
separated into two optimisation processes. In the first 
process, FBSs’ transmit powers are optimised as if the 
MUEs do not exist. In the second one, a different 
algorithm is then used to reduce FBSs transmit power 
until both FUEs and MUEs can be satisfied. Although 
the first process has been shown to be optimal, there is 
no guarantee that power control solution that combine 
both processes are also optimal. As it will be shown later 
in the paper, this indeed lead to a non-optimal power 
solution. In addition, none of the existing schemes [6-9] 
consider cooperation among base stations (BSs) which 
has been shown to improve network performance 
significantly [11]. 
 
In this paper, we propose a new distributed downlink 
power control scheme for HetNets. We formulate the two 
processes used in [8,9] as a single optimisation function. 
This is done by formulating the global optimisation 
function that maximises the number of FBSs transmissions 
in a single HetNets wireless channel with FBSs transmit 
power as its variables and minimum received SINR 
requirements for FUEs and MUEs as its constraints. We 
then decompose this maximization problem into an 
individual FBS power control problem, solvable at a 
FBS level. We assume FBSs and MBS can communicate 
with a femtocell gateway (FGW) through internet backhaul 
connections [2]. A power control scheme for the FBSs 
is then proposed based on the stochastic learning 

automaton technique [12]. Specifically, each FBS is treated 
as a learning automaton and maintains a probability 
vector to select its transmit power. 
 
During the learning process, each FBS adjusts its 
probability vector based on the interference information, 
referred to as reward, from the FGW. The reward 
indicates the number of FBSs’ transmissions that can be 
supported under the SINR requirement constraints of 
FUEs and MUEs. Simulation results show the proposed 
algorithm can achieve more than twice the number of 
simultaneous FBSs’ transmissions achieved by existing 
APLS [7] and MDPC [9] algorithms. Our first contribution 
in this paper is that an FBS only transmits if its transmit 
power can satisfy the minimum received SINR require-
ment of its user, while guaranteeing the minimum received 
SINR requirements of MUEs. This eliminates unnecessary 
transmissions in [6-9] where FBSs are still transmitting 
even though the received SINRs of FUEs are very low. 
Secondly, unlike the schemes in [6-9] where each FBS 
optimizes its transmit power individually, the proposed 
scheme exploits FBSs cooperation where the SINR 
satisfaction information about the FBSs’ transmissions 
are propagated to all FBSs through FGW. This results in 
a larger number of FBSs’ transmissions that can satisfy 
SINR requirements of FUEs and MUEs as compared to 
the schemes in [6-9]. Thirdly, unlike schemes in [6-9] 
where transmit powers in HetNets are assumed to be 
continuous, we consider a discrete transmit power set 
which is commonly used in real digital cellular systems 
[13]. 
 
The reminder of this paper is organized as follows: 
Section II presents the system model. The optimal power 
control problem is formulated in Section III. Section IV 
describes the proposed stochastic learning based discrete 
power control algorithm. Section V discusses the simu-
lation results. Finally, Section VI concludes this paper. 
 

2. Methods 
 
We consider a heterogenous network as shown in Figure 
1. MBS 0 is located at the centre of a macrocell serving 
an area C with a radius of Rm. N FBSs denoted by i ∈ 
N,N = {1, 2, · · · , N} are deployed within C. FBSs 
operate in CA mode and use the same spectrum band  
 

 
 

Figure 1. System Model for a Heterogenous Network 
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with MBS 0. MBS and FBSs can communicate via a FGW 
through Internet-based IP backhaul [2]. Both MUEs and 
FUEs are randomly located within their serving base 
stations’ coverage areas. We further assume that each 
base station serves one user at a transmission slot (a 
transmission slot may refer to a time resource over the 
spectrum band). 
 
We assume that during a transmission slot, MBS 0 
determines its transmit power q0 based on its own 
power control policy. There are L different transmit 
powers for FBSs with the maximum transmit power 
qmax and the minimum transmit power 0, defined as a 
set Q = {0,qmaxL−1, 2×qmax L−1 , · · · , qmax}. Thus 
each FBS i, i ∈ N chooses its transmit power qi from 
Q. By letting MUE 0 and FUE i be the scheduled user 
for MBS 0 and FBS i, i ∈ N, the received SINR of 
MUE 0 can be expressed as 
 

                                (1)

 
 
and received SINR of FUE i, i ∈ {1, · · · ,N} as 
 

         (2) 

 
where σ2 is the background noise power that is assumed 
to be the same for all users, and gi,j , 0 ≤ i, j ≤ N is the 
channel gain from BS j to UE i. We further define Γi as 
the minimum received SINR requirement of UE i, i ∈ 
{0, 1, · · · ,N} and define the following indicator 
function for each UE, 
 

{ ii
otherwiseiI Γ≥= γ,1

,0
                                       (3) 

 
where Ii indicates whether the received SINR at UE i 
satisfies its minimum SINR requirement or not. By 
using (3), the number of FBSs’ transmissions that 
achieve the minimum SINR requirements at FUEs in the 
presence of MBS’s transmission, Ns can then be written 
as, 

∑
=

=
N

i
is IIN

1
0                                                    (4) 

 
Note that Ns > 0 only when the received SINR of MUE 
0 and at least one scheduled FUE are greater than or 
equal to their minimum received SINR requirements. 
By using (4) and letting q = [q1, q2, · · · , qN] be the 
selected transmit power vector of all FBSs, we can then 

write the optimisation function for the power control 
problem as follows, 
 

s
q

Nmax                                                             (5a) 

 

NiQqts i ∈∀∈..                                        (5b) 

 
where constraint (5b) indicates the choices of transmit 
power for FBSs, which defined by Q = {0, qmax L−1, 
2×qmax L−1 , · · · , qmax}. Note that the global optimal 
solution for (5) can be obtained by using an exhaustive 
search over all the possible transmit power com-
binations for all FBSs and selecting the transmit power 
combination that gives the maximum of (5). Unfortunately, 
the exhaustive search scheme requires high computational 
complexity. 
 
Stochastic learning based discrete power control. In 
this section, we propose a stochastic learning technique 
based solution for (5) where each FBS is regarded as a 
learning automata that adjusts its own transmit power by 
using the reward containing interference information 
obtained from FGW. We will describe the basic of 
stochastic learning approach and how to use it to 
develop the proposed discrete power control algorithm. 
 
Preliminaries of stochastic learning. Stochastic learning 
automata are adaptive decision making devices that are 
capable of learning the desirable actions through 
interactions with the environment [12]. A stochastic 
learning automaton (SLA) can be represented by a tuple 
{A, p, u, T} where A = {a1, a2, · · · , am} is a finite 
action set of all possible actions a SLA can take. p(k) = 
[p1(k), p2(k), · · · , pm(k)], k = 1, 2, · · · is the action 
probability vector at step k where pi(k) represents the 
probability for SLA to choose action ai ∈ A and m P 
i=1 pi = 1. u(k) is the reward a SLA will get by taking 
action ai, which should satisfy 0 < u(k) < 1. Higher 
reward represents better action choice for a SLA. T is 
the learning scheme used by a SLA to update its action 
probability vector, based on its current action probability 
vector, its action, and the reward received. Figure 2 shows 
the interactions between a SLA and the environment. 
Specifically, the interaction at each step k consists of the 
following sequence. 
 

 
 

Figure 2. Learning Automaton 
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In general, a learning scheme is a function which can be 
represented as 
 

))(),(,)(()1( kukakpTkp =+  
 
• The SLA selects an action a(k) ∈ A based on p(k), 
here Prob[a(k) = ai] = pi(k). 
• Environment gives a reward u(k) as a response to the 
action. 
• Based on its action a(k) and the reward u(k) received, 
SLA updates its action probability vector p(k) into 
p(k+1) under the learning scheme T. 
 
The process is repeated until p converges. The objective 
of a learning automaton is to find the optimal action 
which incurs the highest reward after several iterations. 
There are several learning schemes proposed in the 
literature, with which the learning automata can 
asymptotically learn the optimal action, such as linear 
reward-penalty (LR−P) schemes, linear reward-inaction 
(LR−I ) schemes and some other non-linear schemes 
[17,18] (see [12] for a survey).  
 
Stochastic learning based discrete power control 
algorithm. In our system, we regard each FBS as 
stochastic learning automaton. In the following, for each 
FBS i, ∀i ∈ N, we define its action set, probability 
vector, learning scheme and reward function. 1) Action 
set: An action for a FBS is a transmission using a 
selected transmit power. Here we use the selected 
transmit power qi ∈ Q to represent an action ai of FBS 
i. There are L available transmit powers in power set Q. 
2) Probability vector: Corresponding to the action set, 
the probability vector at step k is defined as: pi(k) = 
(pi1(k), pi2(k), · · · , piL(k)), where pij(k) represents the 
probability for FBS i to choose the jth transmit power at 
step k. 3) Reward: Based on our optimization objective 
defined in (5), the reward function for FBS i at step k is 
defined as, 
 

NNku si =)(                                                 (6) 

 
Here, Ns is the number of FBSs’ transmissions that can 
be supported under the SINR requirement constraints of 
FUEs and MUEs, as defined in (4). In each step, based 
on the received transmit powers from all base stations, 
MUE 0 and FUE i, i ∈ N will calculate and send their Ii 
(3) to FGW via MBS 0 and FBS i respectively. Then the 
FGW calculates Ns and normalizes it by N and 
broadcasts ui(k) to all FBSs. The objective of a learning 
automaton is to find the optimal action which incurs the 
highest reward. When FBSs can access the same 
wireless channel with MBS, where ˜ I0 = 1, reward 
function is a monotonically increasing function of the 
number of FBSs’ transmissions with their minimum 
SINR requirements satisfied. This will encourage FBSs 

to adjust their transmit powers in order to achieve the 
biggest Ns which incurs the highest reward. The 
maximum reward can be obtained when the SINR 
targets of both MUE 0 and all the scheduled FUEs can 
be met, where Ns = N. 4) Learning scheme: Learning 
scheme is an algorithm used by FBSs to update their 
probability vectors pi(k). Here, we choose the following 
scheme: 
 

))(()()()1( kpekukpkp iliii i
−+=+ θ     (7) 

 
where 0 < θ < 1 is the learning rate, eli is a unit vector 
of L dimension with lith component be unity, which 
indicates FBS i chooses the lith transmit power from Q. 
This learning scheme is known as linear reward-inaction 
LR−I scheme [12]. LR−I is a well-known updating scheme 
in the stochastic learning theory. It has been proven to be 
ε-optimal with a strong convergence property in [12,22], 
respectively. The proposed stochastic learning based dis-
crete power control algorithm is described in Algorithm 1. 
 
Algorithm 1: Stochastic Learning based Discrete Power 
Control Algorithm (SL-DPC) 
1: Set the initial transmit power selection probability 
vector pi(0) for each FBS i. Let pil(0) = 1/L, ∀i ∈ N, 1 
≤ l ≤ L; 2: At every step k, each FBS i first chooses its 
transmit power qi(k) according to its transmit power 
selection probability vector pi(k), then transmits data to 
FUE i with the selected power qi(k); 3: Both MBS and 
FBSs send their indicators Ii, 0 ≤ i ≤ N (3) to the FGW, 
then each FBS i obtains reward ui(k) specified by (6) 
from the FGW; 4: Each FBS updates its transmit power 
selection probability vector according to the scheme 
specified in (7); 5: If ∀i ∈ N, there exists a transmit 
power selection probability pil(k), 1 ≤ l ≤ L which is 
approaching one, e.g., larger than 0.99 [22], then stop; 
Otherwise, go to step 2); 
 
Convergence property of SL-DPC. We now discuss 
the convergence characteristic of the proposed power 
control scheme. We use the fact that a learning automata 
system with common payoff and LR−I scheme as in (7) 
always converges to a pure strategy Nash equilibrium 
(Refer to Theorem 3.1 and 4.1 in [22] for proof). In our 
system, based on (6) and (7), at step k, FBSs will 
receive the same reward value from FGW, i.e., ui(k) = 
uj(k), ∀i, j ∈ N and employ LR−I scheme. FBSs act as 
a learning automata system with a common payoff and 
LR−I scheme. Thus, the proposed scheme will always 
converge to a pure strategy Nash equilibrium which is 
also a local optimal solution for (5). 
 

3. Results and Discussion 
 
In this section, we evaluate the system performance of 
the proposed SL-DPC algorithm and compares its 
system performance with the global optimal exhaustive 
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search scheme, the APLS scheme [7] and MDPC 
scheme [9], where FBSs control their transmit powers 
without any cooperation and without guaranteeing the 
minimum received SINR requirements for FUEs. 
 
Simulation setup. In this paper, we consider a HetNet 
deployed as shown in Figure 3. One macrocell with three 
sectors is considered. A femtocell block is deployed in 
each sector. The dual stripe model [14] is adopted to 
represent the dense-urban multi-femtocell deployment 
environment. As illustrated in Figure 4, a femtocell 
block is of size 120 m × 70 m and includes two buildings 
(we assume each building has only one floor). In each 
building, there are 2 × 10 apartments, which are of size 
10 m × 10 m. Thus, there are 40 apartments in a block. 
A 10m width street lies between two buildings. 
 
We assume the distance between Femtocell blocks in 
different sectors is sufficiently large so that the intra-tier 
interference between blocks can be neglected. In the 
simulation we consider a femtocell block whose block 
centre is at a distance of 200 m from MBS 0. N(N ≤ 40) 
FBSs are deployed in this block where each FBS is 
installed at the centre of an apartment. FUEs are 
randomly generated in apartments where a FBS is 
installed, while MUEs are randomly dropped in the 
block. Each base station transmits to a user in its 
coverage based on its own scheduling policy (e.g., 
proportional fair scheme). We assume the minimum 
received SINR requirement for FUEs and MUE are 
20dB and 12.5dB respectively. We adopt the approach 
in [23] for modelling path loss in a dense-urban multi-
femtocell environment. The step size for learning scheme 
is set to 0.1 according to [22], which can achieve good 
balance between the system performance and learning 
rate. The system parameters are summarized in Table 1 
[8,9]. 
 
Convergence of the SL-DPC algorithm. We first show 
the convergence property of the proposed SL-DPC  
 

 
 

Figure 3. Simulation System Model with Dual Strip Model 

algorithm. Here we consider there are N = 10 FBSs and 
L = 4 different transmit powers for each FBS, where 

.q,
q

,
q

,Q max
maxmax







 ×

=
3

2

3
0 We assume a static 

channel and user location scenario here. 
 

Table 1. Simulation Parameters 
 

Parameters Value 
Macrocell radius (Rm) 
System bandwidth 
Carrier frequency (f) 
Transmit power of macrocell (q0) 
Maximum transmit power of femtocell 
(qmax) 
Inner wall penetration loss factor (Liw) 
Outer wall penetration loss factor (Low) 
Path loss model 
Minimum received SINR for MUE 0 (Γ0) 
Minimum received SINR for FUE i (Γi) 
White noise power density 
Learning step size (θ) 

1000m 
10 MHz 
2.0 GHz 
43 dBm 
13 dBm 
5 dB 
10 dB 
refer to [23] 
12.5 dB 
20 dB 
-174 dBm/Hz 
(0, 1) 

 
 

 
 

Figure 4. Dual Strip Model for Femtocell Block 
 
 

 
 

Figure 5.  Evolution of the Transmit Power Selection 
Probability of an Arbitrary FBS. N = 10, L = 4, 
θ = 0.1 
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Figure 5 shows the evolution of the transmit power 
selection probability of one of the FBSs, using the 
proposed algorithm under given simulation scenario. 
We can see that the transmit power selection probability 
vector for the FBS evolves from the initial values {1/4, 
1/4, 1/4, 1/4} to {0, 0, 1, 0} in about 800 iterations. 

Thus, this FBS finally selects power 3

2 maxq×
 with 

probability one. Similar observations are observed for 
other FBSs. This indicates that the transmit powers of 
FBSs converge to fixed values which indicate a stable 
solution for (5). 
 
Figure 6 shows the evolution of the reward value (6) for 
FBSs during the calculation process of the proposed 
algorithm. We can see that the common reward for 
FBSs also converges to a specific value of 0.5 which is 
also a NE point according to the analysis of the 
convergence property in Section IV. 
 
Performance comparison. Figure 7 shows the average 
number of FBSs’ transmissions with the minimum 
SINR constraints satisfied of the proposed SL-DPC, 
APLS and MDPC schemes as the number of FBSs 
increases over 1000 trials where we vary the location of 
FBSs and MBS 0 users for each trial. Figure 7 shows 
that the proposed SL-DPC algorithm outperforms the 
APLS and MDPC schemes. The performance gain of 
the proposed algorithm over APLS and MDPC schemes 
is higher as with the number of FBSs increases. When 
there are 30 FBSs that want to transmit at the same time 
in the area, the number of active FBSs of the proposed 
algorithm is more than twice the numbers of APLS and 
MDPC schemes. This is because using the proposed 
scheme FBSs take the number of FBSs’ transmissions 
that can be supported into consideration when selecting 
their transmit powers. In order to achieve a higher 
number, some FBSs will choose to shut down. This 
reduces both the inter-tier and intra-tier interferences, 
 

 
 

Figure 6.  Evolution of the Reward for FBSs, N = 10, L = 4, 
θ = 0.1 

 
 

Figure 7. Average Number of Satisfied FBSs’ Transmissions 
Comparison. L = 4, θ = 0.1 

 
thus more FBSs can meet their users’ minimum SINR 
requirements. However, in MDPC and ALPS schemes, 
FBSs maximize their own rates and adjust their transmit 
powers without guaranteeing the minimum SINR 
requirements of FUEs. That means those FBSs that can 
not satisfy minimum SINR requirements will still 
transmit to their users. That results in higher co-channel 
interference in the system and reduces the number of 
FBSs’ transmissions whose SINR requirements can be 
satisfied. We also compare the number of simultaneous 
FBSs’ transmissions that can be supported by SL-DPC 
algorithm with the exhaustive search scheme. As shown 
in Figure 7, the performance gap between exhaustive 
search and the SL-DPC algorithm becomes larger with 
the number of deployed FBSs increases. 
 
This is because in the exhaustive search scheme, the 
central controller knows all the system parameters 
including channel states, number of FBSs and their 
available transmit powers. It finds the optimal solution 
by trying all the possible transmit power combinations. 
While using the SL-DPC scheme FBSs try possible 
transmit powers based on their probability vectors, which 
are evolved in a try-error-learn mode. There are LN 
different transmit power combinations, with N increases, 
the number of combinations increases dramatically, it is 
harder for FBSs to try all the combinations, they are 
more likely to converge to a local optimal point instead 
of converging to the global optimal. 
 
4. Conclusion 
 
In this paper, we investigate a downlink discrete power 
allocation problem in HetNets with an objective of 
maximizing the number of active FBSs subject to the 
minimum received SINR requirements of the scheduled 
HetNet users. We propose a power allocation scheme 
based on stochastic learning automata technique where 
each FBS is treated as a learning automaton and 
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maintains a probability vector to select its action. The 
proposed scheme exploits the information about the 
number of FBSs that can satisfy the minimum received 
SINR requirements for their respective users to update 
the probability vector for selecting FBS transmit power. 
Simulation results showed that the proposed scheme can 
achieve a significantly higher number of active FBSs as 
compared to other schemes in the literature. 
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