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Abstract 
 

Gellan gum (GG) has gained considerable attention in the food, chemical, and pharmaceutical industries due to its 

functional characteristics. It has versatile properties, such as water solubility, easy bio-fabrication, good film/hydrogel-

formation, biodegradability, and biocompatibility. These properties render GG a promising material in biomedical  

applications, specifically in the development of wound dressing materials. In this review, the use of GG biopolymer as a 

wound dressing material was discussed. Various fillers, such as titanium dioxides, clay, drug, and honey, have been 

incorporated in GG to produce film, hydrogel, or scaffold materials. The effects of filler on the mechanical performance, 

physical properties, antibacterial activities, and healing activities of GG biocomposites were explained. Overall, this re-

view summarizes the effect of fillers on GG biocomposites for various biomedical uses. 
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Introduction 
 

Wound dressing. Wound dressing helps accelerate 

healing and avoid any infections or complications. Dif-

ferent wound dressings have been developed and used 

based on the type and severity of the wound. The selec-

tion of materials, such as film, hydrogel, and scaffold, 

is crucial in accelerating wound healing. With advanced 

technology, many types of wound dressing products with 

different biopolymers are available in the market. Tradi-

tional wound dressings, namely gauze, plasters, and 

bandages, are utilized to protect the wound from contam-

inations. However, traditional dressings do not provide a 

moist environment and accelerate healing relative to 

wound care products. In addition, they adhere to the 

wound and cause trauma to the patient when removed. 

Active wound care dressings not only cover the wound 

but also facilitate wound healing by utilizing biopoly-

mers. An ideal wound dressing should be biocompatible 

with tissue surfaces, secure the wound from bacterial in-

fection, and offer a moist and healing environment [1, 

2]. Therefore, several studies focused on formulating ac-

tive wound dressing materials, including biopolymers 

chitosan [3, 4], sodium alginate [5], xanthan gum [6], car-

rageenan [7], and gellan gum (GG) [8, 9], to promote 

wound healing. Biopolymers, particularly GG, are incor-

porated with various fillers to enhance the properties of 

composites and promote healing activities. 

 

Gellan gum. GG is a water-soluble polymer produced in 

the laboratory in 1982 and has gained great importance in 

the biomedical, food, and chemical industries due to its 

functional properties. GG is a polysaccharide resulted from 

the fermentation of the pure culture of Pseudomonas 

elodea [2, 10–12]. It has been approved for use in food 

products by the Food and Drug Administration, USA. 

The unique properties of GG have attracted great attention 

for the application of the material in many fields. The 

food industry uses GG in emulsifiers, stabilizers, binders, 

gelling agents, coagulants, lubricants, film formers, and 

thickening agents. GG has also been used as agar in the 

preparation of microbiological media to improve clarity 

and reduce toxicity [13]. 

 

Structure of gellan gum. GG has a linear structure of 

negatively charged exopolysaccharide repeating units 

consisting of two β-d-glucose (d-Glc), one l-rhamnose (l-

Rha), and one d-glucuronic acid (d-GlcA) (Figure 1) [14–

16]. Structurally, gellan is a double helix that is promoted 

by the (1→3) linkage in the gellan repeating unit [17]. 

 

Type of gellan gum. GG exists in two forms: high acyl 

GG (HA) and low acyl GG (LA) [18, 19]. These GG forms 

differ in structure, resulting in a different range of tex-

tural properties. HA GG has acetate and glycerate as its 

substituents [20]. Acyl substituents in the GG influence 

the properties of gel produced. Removal of both substitu-

ents by treating the fermentation broth with hot alkali 

produces deacylated polymer, which is also known as LA 

GG [21, 22]. Figures 2(a) and 2(b) show the chemical 

structure of HA and LA GG, respectively. 
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HA GG can achieve complete hydration with heating to 

above 80 °C, whereas LA GG depends on the type and 

concentrations of ions in solution. HA GG is in a 

disordered single-coiled structure at high temperatures 

(80 °C). LA GG is transformed to a double helix and 

bonded by internal hydrogen bonding between D-

glucoronate and D-glucose C residues upon cooling at 50 

°C because of the presence of glycerate, thereby 

producing smooth and elastic GG gels. Compared with 

HA GG, the absence of acyl groups on LA GG created a 

different gelation behavior. LA GG undergoes order 

transition at low temperature, and gel-promoting cations 

are necessary to form strong and brittle 3D network gels. 

The difference in the properties of HA and LA GG is 

shown in Table 1. 

 

 
 

Figure 1. Chemical Structure of Gellan Gum [14] 
 

 

 
 

Figure 2. Chemical Structure of (a) High Acyl Gellan Gum and (b) Low Acyl Gellan Gum [23] 
 

 
Table 1.  Comparison of the Properties of High Acyl (HA) and Low Acyl (LA) Gellan Gum 

 

 HA Gellan Gum LA Gellan Gum 

Hydration >80 °C >80 °C 

Sequestrants No Yes 

Hot viscosity Low Low 

Gelling ions Not required Yes (mono or divalent or acid) 

Setting temperature 50 °C–80 °C 25 °C–60 °C 

Melting Yes 
No (except low ionic strength and 

in milk) 

Texture Soft, elastic Firm, brittle 

 

(a) 

(b) 
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Addition of Fillers 

Fillers are added to the polymer composites to create 

properties improvement to a greater extent. Various fill-

ers have been deployed in composite materials, such as 

carbon-based fillers [24, 25], titanium dioxide [26], clays 

[25], metal [27], silver [28], zinc oxide [29], copper oxide 

[30], halloysite [31], zeolite [32], cellulose [33], and fi-

bers [34]. Nowadays, most studies used nano-sized fillers 

to extend the composite properties. These fillers are incor-

porated into different polymers (natural or synthetic) to 

achieve varied applications, such as in organic photovol-

taics [35], biopharmaceuticals [36], catalysts [37], water 

purification [38], conductive materials [39], and medical 

purposes [40–42]. A few studies have used GG to mix 

with those fillers and for the applications discussed above 

[25, 28, 43]. The present review focuses on the biomedical 

application of GG as a wound dressing material. 

Gellan Gum for Biomedical Applications 

Drug delivery. In drug delivery, various formulations of 

GG are designed to transport the drug to the targeted area, 

such as to the oral cavity, stomach, intestine, colon, ocular, 

nasal, and transdermal deliveries. The various targeted ar-

eas of GG formulation show that GG is a robust material 

that could be tailored to a specific targeted area in our 

body due to its physicochemical, mechanical, and func-

tional characteristics [44]. GG can be formulated in dif-

ferent forms, such as gels, films, microcapsules, nano-

particles, and others, for a different route of admin-

istration. Dewan et al. [45] have reported the gelation 

behavior of formulation poloxamer 407 and GG to re-

lease pilocarpine hydrochloride drug. The addition of 

GG in poloxamer 407 decreases the gel pore size and gel 

dissolution rate of poloxamer. In vitro drug release of pi-

locarpine hydrochloride from poloxamer-GG formula-

tion depicts better delivery than fully poloxamer-based 

gel. 

 

Vashisth et al. [46] encapsulated ofloxacin in GG/PVA 

nanofibers and characterized the drug delivery efficiency 

of the developed polymeric nanofibers. The ofloxacin 

loaded with nanofibers shows a substantial mucoadhesion 

and gastric retention when tested in the gastric mucosal 

membrane of rats. Compared with pure drugs, the devel-

oped nanofibers demonstrate an immediate release fol-

lowed by a sustained release of ofloxacin for up to 24 h. 

The data depict that the usage of GG/PVA can enhance 

drug release activity. Curcumin is also often used to treat 

digestive disorders, such as gastric ulcers. Kerdsakundee 

et al. [47] developed a floating GG-based in situ gel in-

corporated with curcumin-PVP K-30 to overcome low 

aqueous solubility and to prolong the gastric residence 

period. The developed in situ gel improves drug solubility 

by approximately 4000 times compared with pure curcu-

min. 

 

Tissue engineering. Tissue engineering is an emerging 

area in exploiting GG biopolymers to improve or replace 

the biological tissue of humans. GG in general is a highly 

adaptable material for tissue engineering because it can 

have a wide range of forms and functions. Most research 

on GG focused on its use as a material for cartilage 

reconstruction in tissue engineering. The self-repair for 

cartilage is limited and takes a long period to heal from 

degeneration or damage. Therefore, the usage of bio-

materials to replace damaged cells is a great alternative. 

 

Ismail et al. [40] produced a novel GG incorporated with 

TiO2 nanotube films for applications in skin tissue engi-

neering. The nanotube film produced is biocompatible and 

shows no sign of toxicity when tested using 3T3 mouse 

fibroblast cells. GG incorporated with TiO2 induces a 

higher number of cells proliferated after 3 days compared 

with control GG film. Figure 3 displays the cell viability 

and number of cells proliferated for the sample. The films 

produced accelerate cell growth for wound healing and 

show a compatible characteristic for skin tissue regener-

ation. 

 

 
 

Figure 3. (a) Fluorescence Image Cell Growth and (b) MTT Analysis of Cell Proliferation Count for Control, Gellan Gum, 

and Gellan Gum/TiO2 Nanotube Film [40] 
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Vieira et al. [48] studied the use of methacrylate GG 

(GG-MA) in bone tissue engineering. The crosslinking of 

GG-MA solution and CaCl2 produces calcium-enriched 

beads that promote self-mineralization for bone tissue 

development. Energy-Dispersive X-Ray Spectroscopy 

(EDS) and X-Ray Diffractometer (XRD) results 

demonstrated the development of hydroxyapatite on the 

surface of beads after immersion into simulated body 

fluid solution. Figure 4 depicts the results of Scanning 

Electron Microscopy (SEM), XRD, and EDS analyses. 

XRD and EDS analyses confirmed the development of 

hydroxyapatite from the SEM image and showed similar 

characteristics to the theoretical value of hydroxyapatite. 

The developed beads do not trigger inflammation 

cytokines and are ideal for bone tissue mineralization. 

 

Wound dressing materials. GG has been applied as a 

wound dressing material in various forms, such as films, 

hydrogel, scaffolds, and injectable dressing [25, 49, 50]. 

Various fillers have been incorporated in GG composites 

to examine the physical, mechanical, and antibacterial 

activities and healing behavior of the latter as wound 

dressing materials. Transparent films and robust scaffold 

materials form when GG composites are incorporated 

with titanium dioxide nanoparticles, as depicted in Figure 

5 [8]. The transparent material is an advantage to the 

dressing product because it offers easy visibility to the 

wound area underneath the product. 

 

Most GG materials are produced in film form [9, 26, 51, 

52]. Mahmood et al. have developed GG films with the 

addition of lavender/tea tree oils and ofloxacin to de-

termine the healing activity of the materials [9]. Opti-

mized formulation consists of ofloxacin and 25% w/w 

lavender/tea tree oil (OL3 and OT3) shows 98% wound 

contraction in rats after 10 days of treatment (Figure 6).  

 

 
 

Figure 4. (a) SEM Images of Ca-enriched GG-MA Beads. Cauliflower-like Morphology Shows the Deposition of Hydroxyapatite 

on the Surface of Beads, and (b) EDS and XRD Analyses of Ca-enriched GG-MA Beads [48] 

 

 
 

Figure 5. Gellan Gum Film with Titanium Dioxide Nanoparti-cles as Dressing Materials (a) Film [8] and (b) Scaf-FOLD 

Materials [41] 
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Figure 6. (a) Macroscopic View of Excision Wound Treated with Different Formulations. (b) Graphical Representation of 

Wound Contraction for Different Formulations (n = 6, p-value < 0.05, *Compared with Control, #Compared with 

B, compared with O, compared with L3, compared with T3) [9] 
 

 

Histological images display a completely healed epider-

mis. Lavender oil induces tissue remodeling by rapid re-

placement of type III collagen with type I collagen, and 

its antioxidant, anti-inflammatory, and antibacterial prop-

erties [53] playing a role in wound healing. Tea tree oil 

also boosts wound healing through its antimicrobial, an-

tioxidant, anti-inflammatory, and immunomodulatory 

activities [54]. 

 

Few studies have incorporated titanium dioxides in dif-

ferent shapes, such as nanoparticles, nanotubes, and na-

norods in GG composite film as dressing materials [26, 

40–42]. The addition of TiO2 nanotubes (20% w/w) has 

increased the tensile strength and Young’s modulus of 

GG films as well as antibacterial activities against Staph-

ylococcus aureus, Streptococcus, Escherichia coli, and 

Pseudomonas aeruginosa [42]. The study also reported 

an increase in mechanical strength by incorporating TiO2 

nanoparticles in GG films than without the filler [8]. Not 

limited to that, efficient antibacterial activities were also 

observed against S. aureus and E. coli bacteria. Many 

studies have reported the antibacterial mechanism of TiO2. 

TiO2 nanoparticles/ nanotubes/nanorods can dissolve the 

outer membranes of bacteria and by the existence of hy-

droxyl groups causing the death of organisms [55]. The 

antibacterial impact of TiO2 nanotubes is usually accred-

ited to the reactive oxygen species (ROS) formation, 

mainly hydroxyl radicals (OH), decomposes the bacterial 

outer membranes and ultimately kill the cell [56]. TiO2 is 

also photocatalytically active and generates electron–

hole pairs [57]. The photogenerated charge carriers act as 

strong reducing and oxidizing agents. Water molecules 

react with holes producing hydroxyl radicals (OH), and 

oxygen molecules react with electrons generating super-

oxides (O2–). These reactive species assist oxidation of the 

bacterial cells. The high surface area of mesoporous TiO2 

nanotubes supports generation a great number of elec-

tron–hole pairs and, accordingly, shows an improved anti-

bacterial activity. Moreover, TiO2 nanotubes can infil-

trate into the cell membranes of the bacteria, leads to the 

inactivation of the bacteria. Other studies have reported 

the strong antibacterial activity of TiO2 in different bi-

opolymers against Gram-negative and Gram-positive 

bacteria [58–60], in which the latter has undoubtfully 

strong activity in combating the bacteria and is beneficial 

in wound dressing materials. 

 

TiO2 is biocompatible with cell lines, such as L929 [61], 

HepG2 [62], 3T3 mouse fibroblast cells [42], human 

Caucasian foetal foreskin fibroblast (HFFF2) [63], and 

osteoblast-like HOS (MG-63) [64], and shows good heal-

ing activities on rats [65–67]. TiO2 nanoparticles enhance 

the action of fibroblasts and collagen in regenerating 

wound tissues [68]. The increase in collagen production 

causing the re-epithelialization occurs in open wounds 

that lead to quick wound healing. Figure 7 shows the 

wound healing of GG film with TiO2 nanoparticles 

within 14 days [8]. It clearly shows that the addition of 

TiO2 enhances wound closure than on GG films. Further-

more, TiO2 is biologically inert and nontoxic either to hu-

mans or animals at low concentrations [69]. 

 

Honey is another compound used to improve the healing 

activities of GG composite films. Muktar et al. [50] re-

ported the effect of GG-virgin coconut oil containing Ma-

nuka honey on wound healing. The composition of the 

hydrogel enhances the compressive stress by threefold 

and is applied to a different part of the body because of 

its flexibility. The water vapor transmission rates 

(WVTRs) of the hydrogels produced are within the range 



16   Hishamuddin, et al. 

Makara J. Sci.   March 2022  Vol. 26  No. 1 

of commercial wound dressings (112–132 g m−2 day−1) 

and have the potential to treat acute wounds. GG film 

with 20% honey (w/w%) clearly shows an enhanced 

healing process than GG films with other concentrations 

of honey. The action of honey to the wound is due to 

stimulating the angiogenesis and growth of fibroblast un-

der the skin. To address the excessive ROS during wound 

healing activity, the antioxidant capacity of honey is cru-

cial, which specifically acts as a secondary messenger to 

induce proliferation and differentiation of the wound 

[70]. 

 

Collagen is another material that helps improve the prop-

erties of GG films. Collagen helps expedite healing by 

promoting cellular adhesion and proliferation [71, 72] 

and increasing several growth factors [73]. Ng et al. [74] 

formulated pristine GG–collagen hydrogel to produce 

wound healing paracrine factors that are involved in 

wound healing. The team has reported that the cell via-

bility of GG–collagen hydrogel is slightly higher than 

that of adipose-derived stem cells encased in gold-stand-

ard pure type-1 collagen hydrogels. As tested on full-

thickness burn wounds of mice, the wound dressing can 

enhance early wound closure, reduce inflammation, and 

promote complete skin regeneration. 

 

The incorporation of drugs in wound dressing helps im-

prove drug delivery to the wound. In general, it prolongs 

drug release and prevents the release of high doses at one 

time, which can cause undesired side effects [75, 76]. The 

incorporation of ibuprofen in GG hydrogel leads to a low 

swelling percentage of 22% ± 1%, which results in a slow 

drug release with the total drug released within 15 h [77]. 

The formulation of GG hydrogel with 5.0% ibuprofen ex-

hibits a slight antibacterial activity against S. aureus with 

inhibition zone measured at 9.7 ± 1.15 mm, whereas in 

vitro cell study shows biocompatibility with the human 

cell line (CRL2522). The incorporation of acetamino-

phen, an analgesic drug in Kelcogel hydrogel film, in-

creases its physical characteristics, compressive strength, 

and thermal behavior, making it suitable to be applied as 

a dressing material [78]. The addition of acetaminophen 

in GG films increases the water vapor transmission rate 

to a value in the range of commercial wound dressing 

products. The increasing acetaminophen concentration 

improves crosslinking behavior among the film network 

and causes the strong hydrogen bond between GG and ac-

etaminophen, thereby increasing the compressive strength 

and Young’s modulus. 

 

Mat Amin et al. [61] focused on electrolyte complex ma-

terial dual-layer films: a chitosan upper layer and a GG 

lower layer. The addition of levofloxacin in the chitosan 

layer does not exert a substantial impact on the mechani-

cal properties and displays an effective antibacterial ac-

tivity. The incorporation of TiO2, ZnO, and Ag nanopar-

ticles with underlayer GG films improves ductility where 

the tensile strength and Young’s modulus decrease. Com-

pared with the two other nanoparticles, the underlayer 

GG/TiO2 composite shows high-viability cells and pro-

motes the development of viable L929 cells (Figure 7). 

 

 
 

Figure 7. (a) Cell Proliferation for TCPP, GG, GG-Ti20, and Dual-layer (GG-Ti20 Surface) Films. (b) and (c) Fluorescence 

Microscope Images of L929 Cells on the CH-Lev01 and GG-Ti20 Surfaces of a Dual-layer Film after Incubating for 

72 h. Scale Bar Represents 20 µm. [66] 

Few studies focused on the crosslinking of clay with bi-

opolymer hydrogel [25, 79]. Mohd et al. [25] reported 

that the addition of sodium montmorillonite (Na-MMT) 

in GG hydrogel increases the swelling ratio of the 
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hydrogel and produces WVTR values in the range of 

1106–1890 g m−2 day−1, that is similar to the commercial 

wound dressing WVTR value. Cell studies revealed that 

the addition of Na-MMT in GG hydrogel is non-cyto-

toxic to human cell lines (CRL2522) after being cultured 

for 72 h. Pacelli et al. [80] found that the incorporation 

of GG-methacrylate with laponite® XLG produces 

stronger hydrogels compared with single matrices of GG-

MA, which undergoes degradation after sterilization. The 

inclusion of laponite produces stable hydrogels with al-

most unaltered or intact mechanical properties after ther-

mal treatment. With the same formulation, ofloxacin is 

added to study the release profile of the nanocomposite 

hydrogel [80]. The amount of drug is slow release as well 

as biocompatibility and non-cytotoxicity on human fibro-

blasts. Both nanocomposite hydrogel formulations may 

be applied as a wound dressing material for the chroni-

cally infected burn wounds treatment. 

 

Injectable wound dressing has been a recent interest for 

wound healing since it can fit the shape of the wound per-

fectly. Zheng et al. [81] developed an injectable gelatin–

gellan hydrogel to be used as a wound dressing. The com-

position of gelatin–GG hydrogel depicts good gelation 

properties that are ideal for the injectable form of a hy-

drogel. The blending of tannic acid into gelatin–GG hy-

drogel shows a significantly higher epidermal thickness 

and collagen concentration compared with another group 

of dressings (Figure 8). The hydrogel exerts no cytotoxic 

effect, and faster proliferation of L929 cells indicates the 

biocompatibility of the hydrogel to be applied as wound 

dressing material. Table 2 summarizes the different fill-

ers incorporated with GG as wound dressing materials. 

 

 

 
 

Figure 8. (A) and (B) Histological Image of Mice Epidermis, (C) Thickness of the Epidermis, and (D) Collagen Content of 

Tannic Acid-loaded Hydrogel at 12-day Wound Healing [81] 
 

 

Table 2.  Summary of GG Composites with Different Fillers as Wound Dressing Materials 
 

No. Type Filler Summary of finding References 

1. Film 

Therapeutic oils and 

ofloxacin 

 

Optimized formulation containing ofloxacin and 

25% w/w lavender/tea tree oil shows 98% 

wound contraction in rats after 10 days of treat-

ment. Histological images display completely 

healed epidermis. 

[9] 

2. Scaffold Ball clay 

Ball clay improves the mechanical performance, 

swelling, and thermal behavior of the GG scaf-

fold and could be used as an active wound care 

product. 

[82] 

Table 2.  Summary of GG Composites with Different Fillers as Wound Dressing Materials (Continue) 
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No. Type Filler Summary of finding References 

3. Film 
Titanium dioxide 

nanotubes 

Bio-nanocomposite films have good biocompat-

ibility against 3T3 mouse fibroblast cells and 

accelerate healing of open excision-type wounds 

on Sprague–Dawley rats. 

[42] 

4. Hydrogel Silver nanoparticles 
Composite gel exhibits higher antibacterial ac-

tivity than the parent gel. 
[83] 

5. Hydrogel Collagen 

Enhances early wound closure, reduces inflam-

mation, and promotes complete skin regenera-

tion. 

[74] 

6. Hydrogels 

Manuka honey with 

silica, bentonite, or 

halloysite 

Mesoporous silica provides the best perfor-

mance in regards to the in vitro cytocompatibil-

ity and antibacterial preventive activity in pro-

tecting cells in a co-culture model. 

[84] 

7. Hydrogel Polydopamine (pDA) 

Human adipose-derived stem cells (hASCs) 

seeded on the pDa coated GG hydrogels display 

larger cell area, increased proliferation rate, and 

enhanced gene expression of focal adhesion and 

cytoskeletal proteins. 

[85] 

8. Scaffold 

Demineralized bone 

powder extracted 

from Gallus var do-

mesticus (GD) 

The prepared pore scaffold was biocompatible 

and promoted OC regeneration and integration 

of newly formed tissues with the host tissues in 

a rabbit. 

[86] 

9. Scaffold 
Carboxymethyl chi-

tosan 

The ratio of 2:1 OG/CMCS has the best effi-

ciency. The mechanical properties of the scaf-

fold improve. 

[4] 

10. Film Norfloxacin 

The antibacterial activity is directly proportional 

to the release rate, which is at a higher concen-

tration of norfloxacin, resulting in stronger anti-

bacterial properties. 

[49] 

11. Film 
Titanium dioxide na-

noparticles 

GG + TiO2 nanoparticle biofilm demonstrates 

better cell-to-cell interaction properties by pro-

moting cell proliferation and cell migration to 

accelerate open excision wound healing on 

Sprague–Dawley rats. 

[8, 41] 

12. Film 
Glucosamine /clio-

quinol 

The formulation decreases epidermal growth 

factor receptor (EFGR) expression and sup-

presses tumor progression. 

[87] 

13. 
Hydrogel 

film 
Acetaminophen 

The addition of acetaminophen improves the 

physical properties, compressive strength, and 

thermal behavior of the Kelcogel hydrogel film 

and could be applied as a dressing material. 

[78] 

14. Film 

Virgin Coconut Oil 

Film Embedded Nor-

floxacin 

 

The inhibition zones of GG-NOR and GG-

VCONOR film are 5.3 ± 0.06 and 5.7 ± 0.06 

mm against Gram-positive (Staphylococcus au-

reus) and 5.0 ± 0.01 mm and 6.3 ± 0.06 mm 

against Gram-negative bacteria (Escherichia 

coli). 

[88] 

15. Hydrogel Manuka Honey 

In vivo healing on dermal wounds exhibits that 

the inclusion of honey accelerates wound closure 

and shows complete neo-epidermal of wounds. 

[50] 

16. Hydrogel Manuka Honey 

Water vapor transmission is in the range of 

commercial products and has a higher tensile 

strain with a low concentration of Manuka honey. 

[52] 

 

Table 2.  Summary of GG Composites with Different Fillers as Wound Dressing Materials (Continue) 
 

No. Type Filler Summary of finding References 
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17. Hydrogel 

Clay (sodium mont-

morillonite (Na-

MMT) 

GG incorporated with Na-MMT is non-cyto-

toxic to human skin fibroblast cells (CRL2522) 

after being cultured for 72 h. 

[25] 

18. Hydrogel Ibuprofen 

The hydrogel exhibits a slight antibacterial 

property toward Staphylococcus aureus with in-

hibition zone measured at 9.7 ± 1.15 mm, 

whereas in vitro cell study on normal human 

dermal fibroblast cells (CRL2522) indicated that 

the hydrogel formulation is biocompatible with 

the human cell line. 

[77] 

19. Hydrogel Apigenin (APN) 

APN GG/chitosan found a higher wound heal-

ing effect in diabetic and normal wound tissues 

with significant antioxidant activity. 

[89] 

20. Hydrogels laponite® XLG 

This novel NC hydrogel could be used as a 

wound dressing material for the treatment of 

burn wounds, which are subjected to chronic in-

fections. 

[80] 

21. Scaffold 
MA/ Laponite/ Of-

loxacin 

The amount of drug release is slowed down and 

non-specific mechanical damage on human fi-

broblasts. 

[80] 

22. 
Hydrogel 

membrane 

Xanthan gum/ hyalu-

ronan 

Formulations of the XG/GG/HA hydrogel mem-

branes reduce tendon adhesion with equal effi-

cacy but without reducing the tendon strength 

compared with Seprafilm. 

[90] 

23. Film Virgin coconut oil 

VCO is non-cytotoxic to human skin fibroblast 

cells (CRL2522) with limited cell growth ob-

served on GG-VCO3 films at 1650 cells/well af-

ter incubation for 72 h, which could be due to 

the hydrophobic influence of the material sur-

face. 

[91] 

24. 
Dual-layer 

films 

Levofloxacin and ti-

tanium dioxide 

The upper layer of chitosan with incorporated 

levofloxacin displays antibacterial activity, 

whereas the lower layer of a GG /TiO2 compo-

site supports the growth of fibroblastic cells. 

[61] 

25. 
Non-woven 

dressing 
Silver 

The new hydrophilic non-woven dressings show 

enhanced water uptake capability, slow dehy-

dration rates, and promising antibacterial activ-

ity against Staphylococcus aureus and Pseudo-

monas aeruginosa. 

92] 

26. Films 

1-ethyl-3-(3-dime-

thylaminopropyl)car-

bodiimide (EDC) 

In in vitro biocompatibility tests, GG40 film ex-

hibits nontoxic effects on L929 cells and inhib-

its absorption and activation of platelets. When 

implanted into rat subcutaneous tissue, the 

GG40 film causes minor inflammation in the 

early postoperative period. The effects of GG40 

film on wound healing, wound size reduction 

(%), and collagen content are higher than those 

of commercial products (Duoderm). 

[51] 

 
 

Conclusion 
 

GG has a high degree of versatility and shows superiority 

to a wide range of utilizations in the food, medicine, mi-

crobial growth, and pharmaceutical industries. It has 

been applied in various biomedical uses, namely drug de-

livery, tissue engineering, and wound dressing materials. 

Various fillers have been incorporated to improve the 

physical characteristics of GG materials, for instance ti-

tanium dioxide, drugs, honey, and silver nanoparticles. 

Moreover, the addition of fillers improves the antibacterial 

activities and enhances the healing activities of wound 

dressing materials. This review shows that adding fillers 

in GG materials offers a synergistic effect in improving 

the physical properties of the latter, the antibacterial ac-

tivities, and wound healing. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/apigenin
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