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Abstract

In the previous study, the optimal performance tfa-dimensional (2D) floating breakwater shape whined. The
performance of this shape was also confirmed witmaael experiment in a towing tank. Moreover, thape’s

performance in three dimensions (3D) was invegdjah a subsequent study. However, to predict thepe's

performance in a real application more accuratbly,shape’s characteristics in oblique waves migstlze evaluated.
In this study, the performance and characteristfahe model (hydrodynamic forces, body motionsyevalevations,
and drift forces) are computed using a higher-obdemdary element method (HOBEM). The HOBEM, whikbased
on the potential flow theory and uses quadraticesgntation for quadrilateral panels and velociyeptials, can be
used to obtain more accurate results with fewerelsganompared to the conventional panel method (CPWge

computational accuracy is confirmed by using Hadiilewman and energy conservation relations. In ghisly, 3D

wave effects were verified, and the body motionsawauch smaller compared to the 2D case. In additithough the
performance in terms of wave elevations dependthemeasurement positions, the optimal performantained in

the 2D case can be realized for a longer body hengt

Abstrak

Evaluas Performa Sebuah Pemecah Gelombang Terapung yang Telah Dioptimasi pada Gelombang Datang
Miring dengan Metode Elemen Batas Orde Tinggi (HOBEM). Pada penelitian sebelumnya, sebuah bentuk model
pemecah gelombang terapung dalam kasus 2D yang umgaipperforma optimal telah didapatkan. Perforraa d
bentuk ini dikonfirmasi dengan melakukan sebualpelksmen model pada kolam uji. Selain itu, performeadel
tersebut telah pula diinvestigasi untuk kasus 3@apzenelitian berikutnya. Namun demikian, untukadapemprediksi
performa model tersebut secara lebih akurat sas¢rppannya di dunia nyata, maka menjadi sangatngenhtuk
mengevaluasi karakteristik dan performa model ters@pada kasus gelombang datang miring. Pada fianeili,
performa dan karakteristik dari model yang dimakbecupa gaya hidrodinamika, olah gerak, elevasirgbang dan
gaya drift ditentukan dengan menggunakan metode elemen lmths tinggi atau HOBEM. HOBEM yang
dikembangkan berdasarkan teori potensial aliranndamggunakan representasi kuadratik untuk panerkateral dan
potensial kecepatan, dapat digunakan untuk mengfefwdsil yang lebih akurat dengan menggunakan juimdanel
yang lebih sedikit dibandingkan dengan metode pam@ensional. Keakuratan perhitungan dapat dikowafsi dengan
menggunakan relasi Haskind-Newman and hukum koaseenergi. Dari penelitian ini, efek gelombang 8&pat
diverifikasi lebih lanjut dan olah gerak model diukkan menjadi jauh lebih kecil dibandingkan p&daus 2D. Selain
itu, dapat pula disimpulkan dari hasil perhitundgsmihwa meskipun performa model berupa elevasi gedlomiakan
tergantung dari posisi pengukuran, akan tetapioped optimal yang telah didapatkan sebelumnya padas 2D
dimensi dapat direalisasi kembali untuk model yaumgup panjang.

Keywords: 3D wave effects, floating breakwater,hbigorder boundary element method (HOBEM), obliguayes,
performance evaluation

1. Introduction researchers. The main objectives of their researeh
increasing the performance of this type of breakwat
High demand and the wide application of a floatiyye which is commonly measured by the number of indiden

of breakwater has attracted the attention of many waves transmitted by and reflected from the body.
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Therefore, the performance of several model shapes and Zheng et al.

examined floating rectangular

have been evaluated and tested numerically and/or structures [15,16].

experimentally such as the Y-shaped model [1], pi-
shaped model [2], diamond-shaped model [3], pontoon
type model [4,5], cage-shaped model [6], and many
other shapes.

Not only the shapes but also the evaluation methods
used in the performance evaluation are diverse. For
example, Kashiwagi et al. applied the boundary elgm
method (BEM) [7], Rahman et al. implemented the
volume of fluid method [8], Koshizuka et al. usdt t
moving particle semi-implicit method [9], and Koo
adopted a nonlinear numerical wave tank (NWT)
technique [10]. Each method has advantages and
disadvantages. The method implemented by Kashiwagi
et al. is based only on linear theory but is pcadtio

use with less computation time. The methods used by
Rahman et al.,, Koshizuka et al., and Koo treated
nonlinear phenomena but with higher computational
costs.

In a study conducted by Mahmuddin and Kashiwagi, an
optimization method called the genetic algorithmAJG
was adopted to obtain a two-dimensional (2D) model
shape with optimal performance [11]. A real modakw
manufactured and tested in a towing tank at Osaka
University, Japan, to verify the model’'s performanc
Relatively good agreement can be obtained with some
discrepancies in the natural frequencies of roltiomy
especially when the body is free to respond to the
incident wave. These discrepancies could be at&tbu

to viscous damping, which is not considered in the
potential flow theory framework.

In a subsequent study conducted by Kashiwagi and
Mahmuddin, the performance of this model in thedhr
dimensional (3D) case was also evaluated using a
higher-order boundary element method (HOBEM) [12].
The influence of 3D wave effects on the body mation
was small, and the free surface elevation was alpati
three dimensional even near the middle of a lobgely.

In those previous studies [11,12], the incident evav
direction was defined to be perpendicular to thdybo
However, since in the ocean waves come from all
directions, the characteristics and performance in
oblique waves must be evaluated so that the
performance in real applications can be predictedem
comprehensively.

The performance of a floating breakwater model in

In the present study, HOBEM will be used again to
compute the characteristics and performance of the
model for two incident wave angles. In the HOBEM,
the body surface below the free surface is divithta
many quadrilateral panels. Each panel on the body
surface and the unknown velocity potentials on that
panel are represented by 9-node quadratic Lagnangia
elements.

Consequently, greater accuracy can be obtained) usin
fewer panels compared to the conventional constant
panel method (CPM). Using fewer panels in the
computation shortens the computation time. Another
advantage of the HOBEM is that the solid angle is
computed numerically while it is assumed to be tamts

in the CPM.

However, in the HOBEM, dividing the body into pasel

is more difficult compared to the CPM. This is besa

in the HOBEM, two types of nodes must be used,lloca

nodes and global nodes, while only global nodes are
used in the CPM. In both methods, numerical acgurac

can be confirmed with Haskind-Newman and energy
conservation relations.

In this study, 3D wave effects are confirmed and
understood by observing wave field plots. Moreover,
small body motions compared to the corresponding 2D
shape are also observed. Although the performamce i
terms of wave elevation especially wave transmissio
depends on the measurement positions, the optimal
performance obtained in the 2D case can be realored

a longer body length.

2. Methods

Mathematical formulation. The present study is
actually concerned with developing floating breatess

that have arbitrary shapes and high performaneeire
reflection. However, considering the current prable
where the body shape is obtained by extruding a 2D
model shape, the body shapes can be assumed to be
symmetric in terms of thg-z plane but asymmetric in
terms of thex-zplane. As a result, the coordinate system
shown in Fig.1 is adopted.

The origin of the coordinate system is placed & th
center of the body and on the undisturbed freeaserf
and thez-axis is taken positive vertically downward.

obliqgue waves has also been investigated by several The water depth is assumed to be infinite. The leggu

researchers. For example, Dalrymple et al. evaduidie
performance of a floating breakwater for porous
structures [13], Cho et al. evaluated the perfocaanf
the flexible-membrane wave barrier [14], while Wak

Makara J. Technol.

wave is considered to be incoming with incidentlaug
regarding the negative-axis as shown in Fig. 1. Thus
L= -90 degrees means the beam wave incoming from
the positivey -axis.

April 2014 |Vol. 18| No. 1



incident wave

z

Figure 1. Coordinate System in the 3D Analysis

Under the assumption of incompressible and inviscid
flow with irrotational motion, the velocity poteatican

be introduced, satisfying Laplace’s equation as the
governing equation. The boundary conditions are
linearized, and all oscillatory quantities are a&ssd to

be time-harmonic with circular frequeney Applying

the superposition principle, the velocity potentiah be
expressed as a summation of the incident-wave palten
@ and the disturbance potentiglas follows:

o(xy.z9=Re{m v 2re(x %} €] (@)
where ¢, can be given explicitly as
(%Y, 2) :Qi]_i;a g Kz=iK(xcosp+ysing ) )

with g the acceleration of gravity;, the amplitude of
incident wave, andK the wave number given by

K=’ /g . Furthermore, the disturbance potental
can be decomposed in the following form:

6 X
w(x,y,z):?—ij‘ @ (% 9= Kz—’w,(xy% ©)
j=1

- a

where @, denotes the scattering potential in the
diffraction problem, andy is the radiation potential in

the j-th mode of the body motion with complex
amplitude X; . The six modes of motion considered in
the present study are surgg=(1), sway (j =2), heave
(j=3), roll (j=4), pitch (j=5), and yaw (j =6). For
the diffraction problem, the sum @f, + ¢, is denoted as
@p , Which is referred to as the diffraction potential

The governing equation and the boundary condittons
be satisfied can be summarized as follows:

[L] Dzwjzo forz= C 4)

Makara J. Technol.
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[F] aﬁﬂqo]:o onz= ( 5)
0z
og _[n (1=1-9)

) {O iooy oS ©

[B] 6_(02 asgz - (7)
0z

and an appropriate radiation condition of outgoing
waves must be satisfied fgr=1~ 7. Here, S, denotes

the body wetted surface amg the j-th component of

the normal vector, defined as positive when diregti
out of the body and into the fluid.

By using Green’s theorem, the governing differdntia
equations of this problem are turned into integral
equations on the boundary. That boundary surfaoe ca
be only the body surfacg, by introducing the free-
surface Green function, and the resulting integral
equations can be written in the form

ey P+ [, 405 -arQq e
[[.m@aroae Fi-6
=15,

#(P)

®)
j=D

where C(P) is the solid angleP=(x vy, 2 is the field
point, andQ =(x, y', z) is the integration point on the
body surfaceG(P; Q is the free-surface Green function

satisfying the linearized free-surface and radiatio
conditions, which can be expressed as

G<P;Q>=—i(i+—1]—£%(R 23 (9

am\r 1) 2w

where

}=J(x—x')2+(y— )2+ (Z 2=y B+( £ ¥ (10)

r
n
k sinkz+ Kcoskz

_2¢”
Gy(R 2= ﬂjo s

-i e HP(KR)

Ko( KR db

11)

Here, Ko(kR) denotes the second type of modified

Bessel function of the zero-th order aR§”(KR) the
second type of Hankel function of the zero-th order

Higher-order boundary element method. For high
accuracy, the integral equation shown above was
numerically solved with HOBEM, described in
Kashiwagi [17]. The body surface is discretizedoint
many quadrilateral panels. According to the iso-

April 2014 |Vol. 18| No. 1
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parametric representation,
unknown velocity potential on each panel are
represented with 9-point quadratic shape functions
Ny (é,7) (k=1~9) as follows:

9

xnd" = NEN % % 7 (12)
k=1
9

ox.v.2= Y NE D% (13)
k=1

where (X, Vi, %) are local coordinates at 9-nodal points
on a panel under consideration, and likewigalenotes
the value of the velocity potential (which is to be
determined) at the 9-nodal points of a panel.

The shape function in Eqgs. (12) and (13) for a
qguadrilateral panel can be expressed in the foligwi
form

Ny :%{({+{k)’7(’7+’7k) for k=1~4

Ns =27 -D(-¢%), Ne=3¢ €+ D(En?)

14
Ny =21+ €7)

N = (1- &%) (1-1?)

NS:—;E €-D@En?)

where index k denotes the local node number

(k=1~19), as shown in Figure 2.

The normal vector on the body surface (each panaai)
be computed with differentiation of the shape fiorct
as follows:

:aXb’ a= ox dy 9z b= dxdyodz (15)
laxb] 998 9 an 'an ‘an

Through a series of substitutions, the boundarygiratl
equations can be recast in a series of algebraiatiens
for the velocity potentials at nodal points coneigtof
panels. The results can be expressed in the form

N .
NT j 1716
cm¢1m+ZDm,%: nles“” m=1~ NT (16)
= #o(Pr)
where
Dy = H N (&) 28 Q Q)IJ(EO)IdECW (17)
Sr’nn=ﬂs1 n(Q aR; Q 4| ¢ d (18)

Makara J. Technol.

the body surface and the

%
transform
. 4 n=+1 17 3

8 9 6
— i o £
| +

I Il

w wr

1 n=-1 5 2
real panel &-nplane

Figure 2. Quadrilateral 9-node L agrangian Element

and indexn denotes the serial-th panel, indexm the
global serial number of nodal points, ané (n,k) is
also the serial number of nodal points associati#ld w
(to be computed from) theth local node within the-

th panel.|3(6.7)| in Egs. (17) and (18) denotes the
Jacobian in the variable transformatidNT denotes the
total number of nodal points, and thus, Eq. (16gis
linear system of simultaneous equations with
dimensions NTx NT for the unknown velocity
potentials at the nodal points. The solid ar@lein Eq.
(16) is computed numerically by considering theiequ
potential condition that a uniform potential apgliever

a closed domain produces no flux and, thus, zermalo
velocities over the entire boundary.

The free-surface Green function, given by Eq. (ta)

be computed efficiently by combining several
expressions such as the power series, asymptotic
expansions, and recursion formulae; the subrougtne
available in Kashiwagi et al. [18].

In actual numerical computations, a few additidiet
points are considered on the interior free surfate
floating body to remove the irregular frequenciés.
these field points, the value of solid anglg in Eq.
(16) must be zero; this technique is adopted falgw
the idea Haraguchi and Ohmatsu established for 2D
problems [19]. The resultant over-constraint siamgus
equations are solved with the least-squares method.

Hydrodynamic forces. Once the velocity potentials on
the body surface are determined, computing the
hydrodynamic forces is straightforward. The resalts
written in the form

=ef]_an s L p @)

Ej= pgia”% @p 1y dS (20)

where F; is the radiation force in thieth direction due
to thej-th mode of motion, and its real and imaginary

April 2014 |Vol. 18| No. 1



parts are the added mags and damping coefficient
Bj . E; in EQ. (20) denotes the wave-exciting force.

These quantities are expressed in terms of thénooig

the coordinate system shown in Fig. 1, and can be
combined to obtain corresponding quantities exgass
regarding the center of gravity, which will be usiad
establishing the motion equations.

The body motion equations regarding the center of
gravity can be established in a matrix form asofol:

ZG:X]-G{—K(M”(}]- +||:,G)+QG}=EG for i=1~6 (21)

j=1

The superscripG represents the quantities linked to the
center of gravity.M; denotes the generalized mass

matrix, 9; is Kroenecker's delta, and:ﬁ3 is the

restoring-force coefficients due to the static pues. By
solving these coupled motion equations, the complex

motion amplitudex}3 can be determined, and then the

corresponding complex amplitude of the origin of th
coordinate systenX; (j =1~ 6) can be obtained from

X = XJG+€jk| Ok XS3

(1=1~3) (22)

—yG
Xj+3_xj+3

where £, denotes the alternating tensor for the outer
product of the vectors angg), (k=1~3) the ordinates
of the center of gravity.

The numerical accuracy can be confirmed by checking
the Haskind-Newman relation for the wave-exciting
force and the energy-conservation relation for the
damping coefficient. These relations are expreased

E; =p9d3 H{(K,5) (23)
B = p:}’f rRe[ " H (K O (K p)d6 (24)

where H;(K,8) denotes the Kochin function in the
radiation problem, expressed as

Hj(K,B) :”. (aﬁ_ﬂ i]e—Kz—iK(xcoséhysirH)dS (25)
s,\ on on

In terms of the Kochin function, the wave driftdes in
the x- andy-axes proposed by Maruo [20] and the drift
moment about the-axis proposed by Newman [21] can
be computed. The formulae for the first two compuse
are written as

Makara J. Technol.
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— 2 2
Fe :%KL ”| H (K,é’)|2(cosﬁ— co®)dé

T o (26)
— _ pg 2, .
Fy—?aKIO |H(K,0)?(sing - sind)dg
where
6 X]
H(K,8) = H-(K,0)- K> ZLH  (K,0) 27)
7 ;Za j
__ 0 _—Kz-iK(xcosg+ysirg )
Ho(K,6) ﬂ& Po5-e ds (28

Wave elevations on free surface. The wave elevation
on the free surface in the linear theory can beprdged
from

Z(Z y) = @(%, ¥,0)+ @4 (%, y,0)- Kz— (x,¥,0) (29)
a j=1 <a

where the velocity potentials due to disturbanceaby
floating body can be computed from

oP)=—[[ oo(@5-cRoaz 0 (30)

8 (P)= ﬂ { (Q-g5— }G(F?Qd$0? (31)

where P =(x, y,0) is a point on the free surface.

In the HOBEM, these velocity potentials can be
computed by using the shape function and the solsiti

of the velocity potentials at nodal points. Theegrals

in Egs. (30) and (31) can be evaluated by summation
over all panels, on which element computations fwan
done using the same scheme for the coefficienta/sho
in Egs. (17) and (18), witl? placed on the free surface.

The present study is concerned with the transmissio
and reflection waves by a floating breakwater. The
transmission wave is defined by the wave in theslde,
propagating in the same direction as that of tieedant
wave. However, the reflection wave must be defiasd
the wave on the weather side, propagating to the
opposite direction. Thus, the incident-wave term
&(x,y,0) in Eq. (29) is subtracted from Eq. (29) in

numerical computations for the reflection wave.

3. Results and Discussion

Previous results. From a previous study [11], a 2D
shape that has the optimal performance was obtained
The main criterion used for determining the
performance of a model was the wave transmission
amplitude. The smaller the wave transmission, the
higher the performance was leveled.

April 2014 |Vol. 18| No. 1
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The shape and dimensions of the 2D model in non-
dimensional form. The performance of the model in
terms of wave transmission compared to a simple
rectangular box performance is shown again in Eig.
for reference.

In Fig. 4, a significant performance improvement ba
seen in almost the entire frequency range excefitan
very long wavelength region. A larger body dimensio
is needed to improve this region. Please refer to
Mahmuddin and Kashiwagi [11] for more discussion of
this result.

Based on the 2D shape shown in Fig. 3, a 3D model
shape is constructed by extruding it in the lordjital
direction (along x-axis) as shown in Fig. 5. The
transverse section shape is the same as that.i3 Bigd
uniform in the longitudinak-direction with its length
denoted ad.. Following the previous study, two body
lengths will be analyzedL/B=2.0 and 20.0, which
represent shorter and longer bodies, respectively.

b o) \) b

Figure 3. 2D M odel Optimized Shape

Table 1. Dimensions of Optimized 2D M odel

Notations Unit
Maximum breadth B=2b) 2.0
Draft (d) 1.0
Center of Gravity ©QG) 0.82
Roll gyrational radiusKZ2) 0.614
r AR T T =

— — — — Rectangular

i /
08 | / Optimized /
L / /
N / /
0.6 /

\
\
\
\
\
/ \\
L /\ \\
0.2 \
L/ \ /
/ v\ :
I \ /
(R L TV 1A

0 1 ‘2”‘3 4 5‘”6””7
A./B=TUKb

Transmission Coefficient

0

Figure4. Transmission Coefficients of Optimized 2D and
Rectangular M odel

Makara J. Technol.

In the computations, following the 2D analysis tadr
out previously, half of the maximum breadth= B/ 2)

is used for nondimensionalization. Moreover, in the
previous studies [11,12], the incident angke of a
regular incoming wave is set equal fo= -90 degrees

so that the situation corresponds to the 2D cadettam
results for the body motions and the reflection and
transmission wave coefficients can be compared with
2D results.

Performance in oblique waves. In the present study,
two incident wave angles are investigat¢hiz—112.5

and 3,=—157.5, as illustrated in Fig. B, represents the
case when the incident wave is the approaching beam
wave, ands, represents the case when the incident wave
is the approaching head wave.

For the sake of conciseness, only the computation
results for the body motion amplitudes and the wave
transmission coefficients for the free motions case
shown in the present study.

To evaluate the model's performance, six measuremen
positions are defined along tlyeaxis (the centerline of
the body); those are three points in the lee side
(y/b=-4, —-10,and -18 ) and three points in the

weather side ¥/ b=4, 10,and 18) as shown in Fig. 7.

Based on the settings, computations are perforimed f
specific wavelength region. The computation resafts
the body motion amplitudes fg@ case compared to the
2D case are shown in Figs. 8 and 9.

Incident wave

I

Bo=-157.5°

z
Figure 6. Incident Wave Angles Set

April 2014 |Vol. 18| No. 1
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In Fig. 8, in the case of the incident wave as the This is because the influential wave exciting farce
approaching beam wave, the body motions’ ampliiede  (sway, heave, and roll) become smaller as in theipus
similar in tendency and magnitude to those of the case. They are even getting smaller as the incidane
shorter body length, as shown in Fig. 8(a), butehav the approaching head wave, which make the body
significantly smaller amplitude for the longer body motions even smaller as well.

compared to the 2D case, as shown in Fig. 8(b). The

small body motion amplitudes is caused by a deereas

in the wave-exciting forces especially for the sway

heave, and roll modes. These forces influence body >
motions more than the other modes because theibody
elongated along theaxis.

measurement point
The body motion amplitudes for the second case are
shown in Fig. 9. From Fig. 9, it can be seen thxaept
for the heave motion, the magnitude and the tendenc
are different compared to the 2D case. In addifiothe
[ case, the body motion amplitudes become smaller

e Figure 7. M easurement Positions of Wave Elevation
than thes,; case for a longer body, as shown in Fig. 9(b).

.. 3D Motions Amplitude L/B=2 3D Motions Amplitude L/B=20
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The performance in terms of the transmitted wawve fo
the B, case can be plotted as follows. In Fig. 10, the
transmitted wave fluctuates for a shorter body case
especially in the short wavelength region as shawn
Fig. 10(a). This happens because for a short benmtyth,

a significant amount of the incoming incident wase
transmitted to lee side. This is not true for tbader
body dimension, as shown in Fig. 10(b).

In addition, regular variations are observed in the
shorter wavelength region for both results. These
variations are caused by irregular frequencies.ethod

for removing these irregular frequencies has been
implemented by placing additional points on theefre

3D Transmission Coefficient L/B=2

surface as explained in the previous section, bist t
remedy is insufficient. However, the irregular
frequencies are not a fatal problem in discusshey t
results because the mean line of the regular v@anmis
the expected result. The computation resultsfocase
are shown in Fig. 11.

From the results, it can observed that the trarsors
coefficients for the shorter body case are simitar
magnitude and tendency exceptydi=—10as shown in
Fig. 11(a). For a longer body, quite differentlgrr the
B case, the tendency is similar, but the magnitwde i
larger compared to thg, case results. This is because

3D Transmission Coefficient L/B=20
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more waves are transmitted to the lee side compared
the S, case due to the incident wave angle value, which
is an approaching head wave. From the computation
results shown in Figs. 10 and 11, it can be cormdud
that in obligue waves, the transmission coefficient
varies depending on the measurement position.

To observe more closely, the wave field around the
floating breakwater is also computed. Because of
limited space, only the results for a longer body
(L/B=20.0) are shown and discussed. Two wavelengths
are computedA/B=3.0 to represent a relatively shorter

wavelength and/B=6.0 to represent a longer wavelength.

The computation result for the shorter wavelength
AIB=3.0 for £, is plotted and shown in Fig. 12. In Fig.
12, the lee side is much calmer even though the bod
moves freely to respond to the incident wave. The
optimal performance obtained in 2D can also be
obtained for the 3D case when the body lengthng lo
enough.

For the longer wavelengthVB=6.0, the result is shown
in Fig. 13. In Fig. 13, only a small calm arealiserved
in the lee side while other areas has a larger iaudpl
This is because the wavelength is relatively longbis

Free Motions Case 1/B=3.0

730
715
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Figure 12. Wave Field for S, A/B=3.0
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Ampliadiiz. 1

-15 T

y poston !
Figure 13. Wavefield for £, A/B=6.0

Makara J. Technol.

Performance Evaluation of an Optimized Floatingi9

result is reasonable by considering the result shiow
Fig. 4 where the transmission wave amplitude is
relatively larger around wavelengkfB=6.0.

The computation results fg8, case are shown in Fig.
14(a) and (b). In these figures, the calmer argaush
smaller compared to the result shown in Figs. I2Eh
This is because when the wave is the approachiad, he
more waves will be transmitted to the lee side hef t
body than in the previous case.

Moreover, the wave drift forces computed using Eq.
(26) are shown in Fig. 15.
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Figure 14. Wavefield for £,
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Drift Forces (L/B=20 ,=-157.5)
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Figure 15. Drift Forcesfor L/B=20.0
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The 5, case computation result is shown in Fig. 15(a),
and the 5, case result is shown in Fig. 15(b). The
computation result for the drift forces is useful
information for mooring design.

4. Conclusions

From this study, several important points can be
concluded. First, the 3D wave effects can be \estiby
comparing shorter and longer body computation tesul
In addition, the body motion amplitudes are smailher
oblique waves. Moreover, the performance of the ehod
in obliqgue waves depends on the position of

measurement, and the optimum performance in 2D case

can also be realized in the 3D obligue wave case. |
addition to those conclusions, drift forces wasoals
computed and shown in the present study as infasmat

for mooring design.
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