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ABSTRACT

In current medical practice when a patient feels symptoms he/she would consult the doctor. 
The doctor then gives medication in a one-fits-all fashion. However, recent genetics studies 
had shown that different genetic makeup can results in different effects on medication, so the 
medication should be customed for every individual. The main idea of “personalized medicine” 
is to provide the right intervention including medication to the right patient at the right time and 
dose. With this approach, the medication paradigm would shift from curative to preventive. The 
rise of personalized medicine had been possible because the information from ever-increasing 
biomolecular (proteomics, genomics, and other omics) and health-related data are successfully 
“mined” by Artificial Intelligence (AI) tools. In this paper, we proposed that AI systems toward 
personalized medicine must have acceptable performance, be readily interpretable by the 
clinical community, and be validated in a large cohort. We examined a few landmark papers 
with the keyword “AI for personalized medicine application”; 1) automatic image-based patient 
classification, 2) automatic gene-based cancer classification, and 3) automatic health-record heart 
failure with preserved ejection fraction patient phenotyping. All the examples are evaluated by 
their performance, interpretability, and clinical validity. From the analysis, we concluded that 
AI for personalized medicine could benefit by five factors: (1) standardization and pooling of 
genetics and health data, nationally and internationally, (2) the use of multi-modalities data, (3) 
disease specialist to guide the development of AI model, (4) investigation of AI-finding by clinical 
community, and (5) follow-up of AI-finding by the large clinical trial.
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INTRODUCTION

In current medical practice, the doctor diagnoses a 
pathology for patients according to symptomps and 
clinical test, then prescribes medication in one-fits-all 
fashion, without considering genetics, metabolomics, or 
proteomics of the patient. If the patient has side effect 
with the medication he is taking, then the doctor will 
adjust the prescription. Although effective for mass 
manufacturing of drugs, this medication paradigm does 
not consider the biomolecular “omics” of the patient. 
Genetic effect of drug response had been demonstrated on 
racially diverse children with asthma (Mak et al., 2018). 
Another paper reviewed the genetics effect on diabetes 
mellitus type 2 prognosis (Ingelsson & McCarthy, 2018). 
In addition to genomics, metabolomics effects had been 
shown to affect response of paracetamol in rats (Clayton 
et al., 2006). Combination of “omics” data could identify 
genetics difference of patients that respond to Selective 
Serotonin Reuptake Inhibitors (SSRIs) (Nguyen et 
al., 2021).  These findings that correlate genetic plus 
“omics” with drug response raised the question whether 
the medicine could be personalized.

Personalized medicine is a new paradigm in which 
disease prognosis and medication are monitored based 
on genomics profile or other health-related markers in 
personalized way. This is different from evidence-based 
medicine in which the best medication is based on 
average treatment effect (Blackstone, 2019). The vision 
of personalized medicine is to provide right intervention 
to the right patient, at the right time and dose (Fröhlich 
et al., 2018). Because disease prognosis and progression 
can be linked to individual gene and biomarker, 
medication would shift from reactive, in which drugs 
and treatments are performed when the patient already 
showed some symptomps, toward active, in which the 
doctor administers drugs and treatments at the very onset 
of the disease, even before the expected disease shows 
any symptoms. A promising example is the personalized 
medicine for cancer prevention (Kensler et al., 2016) and 
bioinformatics for cancer treatment (Singer et al., 2017).

There are some factors that might impact personalized 
medicidine in past decade. One important factor is the 
gene sequencing advancement. Next generation gene 
sequencing technology (Shendure & Ji, 2008) and the 
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price decline of gene sequencing provide rapid and 
affordable acquisition of genomics information across 
health system (Abul-husn & Kenny, 2019). Biobanks 
initiatives to pool genomics data of hundreds of thousands 
of participants are sprawling in countries such as Denmark 
(Agerbo et al., 2015), United Kingdom (Collins, 2012), 
China (Chen et al., 2011), and Japan (Nagai et al., 2017). 
The emerging field of pharmacogenomics stem on the 
premise that drug response depends on genetic makeup 
of the patients.

Other factor that drives personalized treatment is the 
availability of health record data such as MRI and CT 
scans, Electronic Medical Records (EMR), health 
claims, and ambulatory data from mobile sensors that 
can be utilised for clustering patients group (Hoffman 
& Williams, 2011; Jensen et al., 2012). In addition, 
population wide EMR  enable discovery of disease 
progression on subtypes of population in both cross-
sectional and longitudinal fashion (Huopaniemi et al., 
2014). Furthermore, there is an initiative to collect 
and systemize both EMR and genomics data in EMR-
linked biobanks to facilitate personalized medicine 
discovery and implementation (Gottesman et al., 2013). 
With rapidly increasing genetics, omics, and EMR data, 
scientist needs informatics tool to manage and extract 
useful information.

Indeed, the rise of personalized medicine would 
not be possible without Artificial Intelligence (AI) 
tool to extract information from the pool of data. 
Specifically, AI tool called Machine Learning (ML) 
is utilised to find correlation and pattern in the data 
using statistical inference. Machine Learning algorithm 
can be categorized into supervised and unsupervised 
learning. In the supervised learning, data is divided 
into training set which has the correct output labeled 
by human “supervisor” to create a predictive model 
and validation set to check the accuracy of the model 
(Nichols et al., 2019). In pharmacology, this ML tool 
can predict the effect of drug dosing for specific patient 
groups. For example, supervised learning was trained 
to predict stable warfarin dosing in Caribbean Hispanic 
labeled as “normal”, “low” or “high” dose patients 
using genetic and non-genetic clinical data (Roche-
Lima et al., 2020). Unsupervised learning is used to 
find clusters inside a data without human labeling. In 
addition, subset of unsupervised learning called Deep 
Neural Network (DNN) could extract hidden pattern 
from big data. An example in pharmacology is DNN 
trained on transcriptomic data to classify various drugs 
into therapeutic categories (e.g., cardiovascular agent, 
antineoplastic agent, etc). From the DNN, a matrix that 
highlight “misclassification” of the drugs may indicates 
the potential for drug repurposing (Aliper et al., 2016). 

The aim of this paper is to introduce a few landmark/ 
impactful cases of machine learning application for 
personalized medicine. We will identify factors that 
contribute to the success of machine learning in those 
studies. Furthermore, we try to identify threats that 
may obstruct the translation of machine learning into 
clinical practice of personalized medicine. To conclude, 
a concept for future development of personalized 
medicine is proposed.

METHODS

Google scholar search was performed with the keyword 
“Artificial Intelligence for Personalized Medicine” 
or “Machine Learning for Personalized Medicine” or 
combinations of these words. A few key studies were 
studied to showcase machine learning application in the 
field. First selected example is a tool called C-path that 
used machine learning to find novel feature from tumor 
images (Beck et al., 2011). This example is chosen 
because it highlights superiority of machine learning 
over human experts in novel feature extraction. However, 
the algorithm itself needed human expertise to guide its 
learning process. Second chosen example is algorithm 
to find “attractor metagenes” from genetics data of few 
types of cancers (Cheng et al., 2013). This study is chosen 
because it shows the potential of machine learning to find 
combination of genes responsible for the progression of 
a disease. Third chosen example is phenomapping for 
Heart Failure with preserved Ejection Fraction (HFpEF) 
(Shah et al., 2015). HFpEF phenotyping had been 
difficult due to heterogenous nature of the disease. This 
example shows the use of machine learning in unbiased 
patient clusterization. Fourth example is the use of 
ML to predict treatment outcome in Major Deppresive 
Disorder (MDD) (Athreya et al., 2018). Fifth example is 
Deep Learning framework to predict response of therapy 
in cancer (Sakellaropoulos et al., 2019).

Important Specifications for Personalized Medicine
Before discussing specific examples, we want to propose 
characteristics of “good” ML model for personalized 
medicine. First, ML prediction must have good 
performance as indicated by how accurate the model 
could predict the outcome. Because essentially a learning 
tool builds a model, there is a tradeoff between training 
error when we are creating the model and test error when 
we put new data to our model. We can make a complex 
model with low training error by collecting more training 
data. However, this model will generalize poorly in the 
test data, a problem known as model overfitting. So, we 
should find good balance by making the model not too 
complex and not too simple (Deo, 2015). 

The second characteristic is the interpretability of the 
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learning results. Machine learning derives important 
features from data by correlations. However, correlation 
does not imply causation (Fröhlich et al., 2018). The 
underlying mechanistic causation of correlation found 
by ML model must be investigated by human. In 
medicine, there is high liability when the doctor does not 
know why some genes area related to certain disease. A 
clinically unexplainable results will not likely be adopted 
in clinical practice.

The third characteristic  is the clinical validation of 
the machine learning results. Thorough clinical trial 
must be carried out before the model found by ML can 
be clinically accepted. For machine learning derived 
hypothesis, this can be done in three steps. First is cross-
validation in the initial cohort of the study. Second is 
external validation from another cohort to ensure there 
is no selection bias, for example under represented 
socioracial economic group (Gianfrancesco et al., 2018). 
Third validation is follow-up clinical trial to ensure the 
robustness of the model. The entire process is costly and 
time-consuming, hence only a little of ML-derived model 
had been clinically validated (Fröhlich et al., 2018).

To summarize, there are three important aspects to 
consider in machine learning for personalized medicine 
application. First is prediction performance, second is 
interpretability, third is clinical validation. Now we will 
explore our example with those three key points in mind. 

Computational Pathologist (C-Path) (Beck et al., 
2011)
Breast cancer prognostic are diagnosed by histological 
features of cancerous tissue. The semiquantitative 
epithelial features identification and grading method was 
first introduced by Patey and Scarff in 1928 (Patey & 
Scarff, 1928). Until currently, the grading process is done 
manually by expert pathologists. This method may suffer 
from inter-operator variability (Fanshawe et al., 2008). 
Despite newly found evidence of genes expression in 
cancer stroma (Bianchini et al., 2010; Finak et al., 2008), 
the grading of breast cancer images does not include 
relevant stromal features for its scoring. This highlights 
the subjectivity of grading method and how a novel 
feature finding might be biased by common practice. 

Automatic classification by ML model could detect novel 
overlooked features and eliminating subjectivity of image 
reading. Koller et al developed automated algorithm 
called C-path to detect novel features in epithelial and 
stromal part of the image (Beck et al., 2011). First step 
of the algorithm is supervised learning to classify images 
as stroma or epithelial. Then, rich feature sets were 
extracted from both epithelial and stromal part. Lastly, 
images labelled as survived after 5 years and deceased 
after 5 years were used to build 5-Year-Survival (5YS) 

predictive model. The ML algorithm found three novel 
stromal features that predict 5YS with good accuracy, in 
addition to eight epithelial features.

In term of performance, Kaplan-Meier 5YS curves of 
low-risk and high-risk patients were generated. The 
model can differentiate the two groups with statistically 
significant differences based on the stromal and epithelial 
features. In term of interpretability, the findings of 
stromal features correspond with biomolecular study 
that identifies breast cancer related stromal genes 
(Cheng et al., 2013). Clinical validation in this study is 
done by cross validation in initial cohort (Netherlands 
Cancer Institute, 248 patients) with eight equal folds 
and external validation with another cohort (Vancouver 
General Hospital, 328 patients) (Beck et al., 2011).

Attractor Metagenes (Cheng et al., 2013)
Different types of cancer have the same unifying 
capabilities such as cell invasiveness and proliferation. 
However, previous studies had not been successful in 
identifying common genes for the cancers. Cheng et 
al developed unsupervised clustering algorithm to find 
attractor metagenes from Molecular Taxonomy of Breast 
Cancer International Consortium data of six cancers with 
total genes of 11,395 (Cheng et al., 2013). The attractors 
found by this algorithm are strongly associated with 
three main processes in cancers: mesenchymal transition 
attractors, mitotic chromosomal instability attractors, 
and lymphocyte-specific attractors.

In term of performance, Kaplan-Meier survival curves 
of high metagene and low metagene level were plotted. 
From the plot, the mesenchymal transition metagenes 
are found to yield statistically significant result in early-
stage breast cancer data. Mitotic metagene attractors 
could discriminate two patients’ group from breast 
cancer data. Lymphocyte metagene affecting few nodes 
could distinguish survival rate between the high genes 
and low genes group. In term of interpretability, it should 
be noted that the attractor metagenes could already be 
associated with specific phenotypes such as invasiveness 
of the cell and uncontrollable cell division. However, 
further biomolecular study still needs to be performed 
to find the mechanics behind the genes and the effects. 
Lastly, the data came from database of International 
Consortium, and validation with external cohort was not 
performed.

Phenomapping of Heart Failure with preserved 
Ejection Fraction (HFpEF) (Shah et al., 2015)
HFpEF is a cardiac disorder with heterogenous 
phenotype. To map HFpEF patient into distinct phenotype 
groups (i.e. phenomapping), Shah et al developed 
unsupervised machine learning algorithm to do the task. 
First, Bayesian Information Criterion Analysis is used to 
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find the optimum number of distinct phenotype groups. 
Then, the algorithm sort detailed clinical, laboratory, 
electrocardiographic, and echocardiographic data from 
397 participants to distinct three phenotypes group 
(Shah et al., 2015). Subsequently, different phenogroup 
is associated risk data by Kaplan Meier Curve, and it is 
found that they have different risk factor. The authors 
claimed that their study is the first one to use high-
density phenomapping of a cardiovascular syndrome. 
Furthermore, stratifying patients into different phenotype 
group is beneficial for personalized therapies.

From performance viewpoint, Kaplan-Meier curve 
showed that the three phenotypes’ groups were distinct. 
In term of interpretability, they have identified the 
three groups as: (1) younger patients with normal 
B-type Natriuretic Peptide (BNP) and moderate 
diastolic dysfunction, (2) obese and diabetic patients 
with obstructive sleep apnea and worse Left Ventricle 
relaxation, (3) older patients with significant kidney 
illness, electrical and myocardial remodeling, pulmonary 
high blood pressure, and Right Ventricle disfunction. 
Interpretation of the data were concluded from examining 
relevant features in each group. The model developed 
was validated with prospectively enrolled cohort of 107 
patients (Shah et al., 2015).

Machine Learning (ML) to Predict Treatment 
Outcome in Major Deppresive Disorder (MDD) 
(Athreya et al., 2018)
In diseases that have complex phenotypes such as Major 
Deppresive Disorder (MDD), the subject/ doctor-rated 
severity of symptomps is poor predictor of therapeutic 
success (Chekroud et al., 2016). The outcome prediction 
does not include the biological measures that reflect 
the molecular mechanism of drugs action, and by 
only clinical measures the performance was slightly 
better than chance. Athreya et al developed ML model 
that could predict the outcome of antidepressant 
treatment in patients with MDD by using combination 
of metabolomics, genomics, and sociodemographic 
factors. The developed model was constructed from 
data of the Mayo Clinic Pharmacogenomics Research 
Network Antidepressant Medical Pharmacogenomic 
Study with 603 patients completed the trial (Holmes 
et al., 2011). The patients were given citalopram for 
eight weeks. The psychiatric assessment of depression 
severity was collected at baseline, four weeks, and eight 
weeks. Seven million single-nucleotide polymorphisms 
(SNPs) and 31 metabolites were taken from 290 of the 
603 patients at baseline, four weeks, and eight weeks 
interval (Athreya et al., 2018). A model was built by 
biological data, clinical measure, and sociodemographic 
factors as predictor variables. Except seasonal pattern 
and involvement item, all top five predictors in men and 
women were related to metabolomics. Furthermore, the 

metabolites identified were known to be asssociated with 
mood in behavioral sciences. In overall, the model which 
includes omics and sociodemographic factors increased 
the prediction accuracy from 35% to 80% compared with 
using the clinical measures alone (Athreya et al., 2018).

Deep Learning Framework for Predicting Response 
to Therapy in Cancer (Sakellaropoulos et al., 2019)
Sakellaropoulos et al trained Deep Neural network 
(DNN) from dataset of 1001 cell lines and 251 drugs 
from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database (Yang et al., 2013). Its performance 
was then evaluated on patient cohort from 4 datasets: 
(1) The Cancer Genome Atlas (TCGA) for two 
drugs: cisplatin and paclitaxel (Ding et al., 2016), 
(2) unpublished data from clinical trial of PARP 
inhibitor at MD Anderson Cancer Center, (3) a cohort 
of esophageal adenocarcinomas treated with neo-
adjuvant chemotherapy (Beckell et al., 2019), and (4) 
phase II/III clinical trial of bortezomib in patients with 
relapsed multiple myeloma (Mulligan et al., 2007). The 
perfomance of DNN is evaluated with two classical ML 
method: Random Forest (RF) (Costello et al., 2014) and 
elastic net (Enet) (Zou & Hastie, 2005). Overall, DNN 
performed better than RF and Enet as evaluated by effect 
size and statistical Wilcoxon test. From AUC (area under 
the curve), DNN scored 65%, better than RF (54%) and 
Enet (52%) (Sakellaropoulos et al., 2019, figure 3C). To 
verify biological mechanism behind the DNN finding, 
they evaluated the first hidden layer of the pathways 
detected by DNN for the following drugs: bortezomib, 
cisplatin, and paclitaxel. Evaluation with prior literature 
gave high correspondence: 79% for bortezomib, 96% 
for cisplatin, and 68% for paclitaxel (Sakellaropoulos 
et al., 2019). This means that DNN may be effective in 
revealing underlying pathway of pharmacogenomics 
response to drugs in cancer treatment.

Evaluation of The Machine Learning Models
Table 1 outlines the evaluation of reviewed systems with 
parameters of performance, interpretability, and clinical 
validation.. High performance means the algorithm 
achieved high predictive accuracy between different 
subgroups. High interpretability means biomolecular 
causation can be related with the model derived from 
ML algorithm. Medium interpretability means some 
causation can be associated with the ML model. Low 
interpretability means no association can be made 
between ML correlation and underlying biological 
factors. Medium clinical validity means the algorithm 
was tested with internal and external cohort. Low 
clinical validity means the algorithm was tested only 
within internal cohort.

C-path findings were propelled by biomolecular hints 
that stromal genes is important for the prognostic of 
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breast cancer (Bianchini et al., 2010). Therefore, the 
ML algorithm in this case is hypothesis driven. The first 
part of the learning algorithm was supervised learning 
with stromal and epithelial part of the image annotated 
by expert (Beck et al., 2011). After that, unsupervised 
learning learns new features from the stromal and 
epithelial part. These features can distinguish risk groups 
in patients, resulting in high performance score. Stromal 
features identified by machine learning algorithm 
corresponds strongly to previous study of biomolecular 
stromal markers, therefore this study had high clinical 
interpretability. Nonetheless, clinical validation with 
larger cohort needs to be done for the wide application 
of this finding. In attractor metagenes study, the genes 
found can be associated with distinct events in cancer 
prognosis. However, the causation from genes to the 
specific events need further investigation. Therefore, its 
interpretability score was medium. Kaplan Meier curve 
shows that distinct patient group can be identified, but 
since the data used are from database and not clinical 
trial, its clinical validity is low. Further testing with 
large cohort is needed to ensure validity of the model. 
Phenomapping of HFpEF shows three distinct patient 
groups, therefore it has high performance score. 
Although different characteristic of patient groups can 
be identified, it is not clear how different patient group 
corresponds to different disease type, so we concluded 
that its interpretability is low. Since validation was 
performed only from internal cohort, the clinical validity 
is low. In this study, clinical explanation and further 
validation is needed for the clinical adoption of the 
algorithm.

These first three examples showed application of AI 
to extract information from data and to stratify patient 
groups. First example used images data, second example 
used gene profile data, and third example used health 
record data. This showed that various modalities can 
be used for personalized medicine. Further studies to 
investigate how different modalities could be used for 
AI patient stratification need to be done. For example, 
imaging and health record data could be strong predictors 
to stratify risk in steatohepatitis patient.

In the ML model build for predicting antidepressant effect 

Table 1.  Evaluation of the reviewed systems based on their performance, interpretability, and clinical validity

Criterion C-Path Attractor 
Metagenes

Phenomapping 
of HFpEF

Antidepressant Effect 
Predictors in MDD

DNN for Predicting 
Response of Therapy 
in Cancer

Performance High High High High High

Interpretability High Medium Low Medium High

Clinical Validity Medium Low Low Low Medium

(Nguyen et al., 2021), its accuracy reached 80%, which 
we considered as high. The metabolomics predictors 
were associated with mood, but clear mechanism of 
how this metabolomics interact with drug is unexplored, 
so the interpretability is medium. The validation done 
was only within initial cohort, so its clinical validity is 
low. The DNN model for predicting effect of drugs in 
cancer achieved high performance (Sakellaropoulos et 
al., 2019). Furthermore, the drug pathways identified 
by DNN corresponds with previous literature, so the 
interpretability is high. The DNN is validated on 4 
cohorts, so the clinical validation score is medium. This 
last example showed oncology as the most promising 
and actively researched field for personalized medicine 
(Tsimberidou, Fountzilas, Nikanjam, & Kurzrock, 2020).

The availability of representative data is crucial for the 
AI model. The study of attractor genes have benefitted 
from data available from consortium (Cheng et al., 2013). 
Longitudinal study could provide large and representative 
data (Beck et al., 2011; Shah et al., 2015). Data from 
cohorts in previous trial can be extracted for building 
ML model (Nguyen et al., 2021; Sakellaropoulos et al., 
2019). In addition, multimodalities data could achieve 
better prediction for drug response, as demonstrated 
by drug response prediction in Major Depressived 
Disorder study (Nguyen et al., 2021). Collection and 
standardization national or international bank of multi-
modalities health-related data (genomics, biomarkers, 
images, phenotype, sociodemographic, etc) is crucial for 
the research communities to extract AI-driven hypothesis 
for various diseases and drugs. National and international 
collaboration backed with government initiative should 
be carried out for nationwide data management, such as 
UK Biobank initiative (Sudlow et al., 2015). 

Human guidance can teach the ML model to improve its 
performance. This is showed in first example (C-Path) 
by how hypothesis is used by the expert to annotate the 
stromal part, and this hypothesis is then proven by AI 
method finding. In contrary, ML model can also guide 
human to find new features/predictors. Attractor genes 
identified by AI method in second example should be 
studied further to elucidate why it has correlation with 
different phenotype. Patient classification results in 
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third example can be further studied to find relationship 
between disease subtype and to find why a group develop 
such subtype. Both human and ML model can “learn” 
from each other.

As last note, we saw that most AI finding are retrospective, 
meaning the data was extracted from previous clinical 
trials in other studies. No research is actively validating 
the finding of ML model in clinical validation. More 
progressive uptake of ML model by biological study, 
followed by clinical trial is important for proving the 
usefulness of such ML model for personalized medicine.

CONCLUSION

With the explosion of genes sequencing, imaging, 
bioelectronic health record, and other medical data there 
is a need to extract important information for designing 
therapy as specific as possible which depends on patient 
individual characteristic, also known as “personalized 
medicine/ precision medicine”. Achieving personalized 
treatment would be impossible without AI/ML tools to 
build model from those data. To develop good AI model, 
first we need to collect and standardize representative and 
inclusive data. In addition, multi-modalities data could 
enhance the performance of AI model. After getting 
standardized multimodal data in well-managed national/ 
international databanks, experts or disease specialist 
should guide the application of AI toward personalized 
medicine of specific disease. Then, finding from AI 
model must be investigated by the clinical community 
to understand the underlying causation. Finally, after the 
mechanism is understood, the AI prediction model must 
be validated by larger clinical trial for its translation into 
clinical practice.
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