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Abstract

Rice is one of the major staple foods in the world, especially in Asia. Improving yield potential of superior cultivars is
important to meeting the demand for rice production, which is increasing due to human population increase, climate
change, and degradation of agricultural resources, such as land and water. In this study, a BC3F2 population developed
from an intraspecific cross between Ciherang and a new plant type line (B11143D) was used in a quantitative trait locus
(QTL) analysis. Ciherang is a high yielding rice cultivar with good grain quality which has been planted in 37% of the
irrigated rice area in Indonesia. The objective of this study was to identify QTL(s) for yield components on chromosome
12, which can be used to improve the elite cultivar Ciherang or other popular cultivars through marker-assisted
breeding. A total of two hundred BC3F2 lines were evaluated in the greenhouse during this study. The population was
observed for eight agronomic traits including days to heading (dth), plant height (ph), flag leaf length (fll), panicles per
plant (ppl), panicle length (pl), grains per panicle (gpp), 1000-grain weight (gw), and yield (yld). Four simple sequence
repeats (SSR) markers (RM3472, RM28048, RM28195, and RM1986) were used for targeted mapping on chromosome
12. Linkage analysis identified a QTL for 1000-grain weight located on chromosome 12 at position 53.5 cM–73 cM.

Abstrak

Identifikasi QTL Mayor untuk Sifat Berat Gabah pada Padi Menggunakan Marka Mikrosatelit. Padi merupakan
salah satu komoditas pangan terpenting di dunia, terutama di benua Asia. Perbaikan potensi hasil kultivar unggul
penting dilakukan untuk memenuhi permintaan produksi padi karena meningkatnya jumlah penduduk, perubahan iklim
dan degradasi sumber daya pertanian seperti sumber daya lahan dan air. Pada penelitian ini, populasi BC3F2 yang
dikembangkan dari persilangan antara Ciherang dan galur Padi Tipe Baru (B11143D) digunakan dalam analisis QTL.
Ciherang merupakan kultivar padi yang memiliki potensi hasil tinggi dengan kualitas beras dan nasi yang bagus dan
sekitar 37% dari sawah irigasi di Indonesia ditanami oleh varietas ini. Tujuan dari penelitian ini adalah mengidentifikasi
QTL komponen hasil pada kromosom 12 yang bisa dimanfaatkan untuk memperbaiki kultivar Ciherang atau kultivar-
kultivar populer yang lain melalui pemuliaan berbasis penanda molekuler. Dua ratus galur BC3F2 dievaluasi di rumah
kaca selama penelitian. Populasi diamati 8 sifat agronomisnya yaitu umur berbunga, tinggi tanaman, panjang daun
bendera, jumlah malai per tanaman, panjang malai, jumlah gabah isi per malai, bobot 1000 butir, dan hasil per tanaman.
Empat penanda SSR (RM3472, RM28048, RM28195, dan RM1986) digunakan dalam pemetaan terarah pada
kromosom 12. Analisis keterpautan mengidentifikasi QTL untuk bobot 1000 butir yang terletak pada kromosom 12
pada posisi 53,5 cM–73 cM.

Key words: SSR markers, new plant type, QTL analysis, 1000-grain weight

Introduction

Ciherang is an irrigated rice inbred cultivar released in
the year 2000. Seventeen years after its release, Cihera-
ng is still the most popular rice variety, cultivated in

37% of the irrigated rice area in Indonesia [1], partly
because its grain quality characteristics are preferred by
both traders and consumers. B11143D is a New Plant
Type line superior to Ciherang in some agronomic
characteristics. The grains per panicle for B11143D and
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Ciherang are 207 and 133, respectively [2]. The 1000-
grain weight of B11143D and Ciherang are 26.7 g and
21.1 g, respectively [2]. However, the panicle numbers
per plant for B11143D and Ciherang are 12 and 29,
respectively [2]. Introgression of genetic locus controlling
for the superior traits of B11143D through backcrossing
may improve the yield potential of Ciherang.

Grain yield is a quantitative trait that is affected by the
three component traits including the number of panicles,
number of grains per panicle, and grain weight or grain
size, all of which are controlled by various genes [3].
The first stage in the identification of the genes that
affect a quantitative trait is the mapping of the
quantitative trait locus (QTL) that affects the trait. QTL
is defined as a chromosomal region that affects a
quantitative trait. At least 18 QTLs were identified in 9
out of 12 chromosomes for the panicle number of rice
[4]. Four major QTLs for the number of grains per
panicle have been reported and shown as distributed on
chromosomes 1, 4, 6, and 7 [5-7]. A major QTL (R2 >
10%, [8,9]) for grain weight was identified around the
centromeric region of chromosome 3 [10,11]. Gene
cloning showed that a gene encoding the putative
transmembrane protein is responsible for this QTL [12].
Other major QTLs for grain weight were identified in
chromosome 2, 5, and 8 [2,13,14].

During a previous experiment that used a BC1F1

population derived from a cross between Ciherang and
B11143D, a QTL for yield component was identified on
chromosome 12, where B11143D contributed the
favorable allele [15]. The objective of the current study
was to delimitate the QTL for yield component on
chromosome 12 into a region of 20 cM.

To develop a mapping population, a set of 63 SSR
markers distributed on 12 rice chromosomes were tested
against the BC3F1 population. A BC3F1 line 2-3-6
carrying both parental alleles for the chromosome 12, but
carrying only Ciherang’s allele for majority of the regions
on chromosomes 1-11, was selected [16]. This selected
line was self-pollinated and the progenies were used for
targeted mapping using SSR markers on chromosome 12.
A QTL for 1000-grain weight was located between
markers RM28048 and RM1986, with B11143D
contributing the favorable allele. This is the first major
QTL (R2 = 26%) for grain weight identified on
chromosome 12. The two markers flanking the QTL can
be used for marker-assisted backcrossing to improve grain
weight trait in Ciherang. A BC3F2 line heterozy gous for
the region flanked by these two markers will be
selected, and its progenies will be used for fine mapping
of this trait as a step toward cloning of the gene
responsible for the trait.

Material and Methods

Population development. A BC3F2 (Ciherang x B1114
3D) population was used as the mapping population.
Backcrossing was performed with Ciherang as the
recurrent parent and B11143D as the donor parent in the
greenhouse of ICABIOGRAD, Bogor, Indonesia [2]
[15]. A BC3F1 line carrying both Ciherang and
B11143D alleles for the chromosome 12, but carrying
only Ciherang’s allele for about 85% of the regions on
chromosomes 1-11, was selected (Figure 1) [16]. A total
of 200 BC3F2 lines were produced by self-pollination of
the selected BC3F1 line. The 200 BC3F2 lines, along
with the parental lines, were grown in pots filled with
paddy soil. Compost and NPK 16:16:16 compound
fertilizer were supplied before planting. NPK fertilizer
was supplied again at 21 and 45 days after planting.

Phenotypic evaluation. The BC3F2 and parental lines
were grown in pots in the greenhouse of ICABIOGRAD,
Bogor, Indonesia from June to October 2015. Morpholo
gical observation was conducted on dth (days), ph (cm),
fll (cm), ppl, pl (cm), gpp, gw (g), and gy (g).

SSR genotyping. The genomic DNA of the 200 BC3F2

lines and two parents were isolated from the leaves of 4-
week-old seedlings using a modified Cetyl
trimethylammonium bromide (CTAB) method [17]. The
quality and quantity of DNA were evaluated by gel
electrophoresis with λ DNA as a control. PCR 
amplification was performed in a 96-well plate. The
total volume of reaction in each well was 10 µL,
containing 2 µL of 50 ng genomic DNA as a template,
5.68 µL of ddH2O, 0.12 µL of DreamTaq DNA
Polymerase (5 U/µL), 1 µL of 5 mM SSR primer
(mixed forward and reverse primers), 0.2 µL of 10 mM
dNTPs (dATP, dCTP, dGTP, and dTTP), and 2µL of
10Buffer PCR (Thermo Scientific). Four polymorphic
SSR markers (RM3472, RM28048, RM28195 and
RM1986) located on chromosome 12 were used for
genotyping [2]. PCR amplification was performed by
applying pre-denaturation at 94°C for 5 minutes, 30
cycles of denaturation, annealing, and extension at 94°C
for 30 seconds, 55°C for 30 seconds, and 72°C for 30
seconds, and a final extension at 72°C for 2 minutes [2].
Amplification products were separated on an 8%
poliacrylamid gel electrophoresis, stained with ethidium
bromide solution (20 mg/L) for 10 minutes, and
visualized under trans-UV light using a Chemidoc Gel
System (Bio-Rad). A BC3F2 line was scored as A if it
showed the same band as Ciherang, B if it showed the
same band as B11143D, and H (heterozygous) if it
showed bands from both parents.
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Figure 1. Graphical Genotypes for Chromosome 1 to 12 of the Selected BC3F1 Line 2-3-6 [16]
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Table 1. Phenotype Performance of Parental Lines and a BC3F2 Population

Traits

Parental lines BC3F2 population (n = 200)

Ciherang
mean

B11143D
mean

Ciherang vs
B11143Da Mean Range

Days to heading (dth) 73.33 63.83 ** 71.01 65 - 77

Plant height (ph) 96.92 126.17 ** 98.96 75 - 188

Panicle per plant (ppl) 9.76 4.33 ** 9.66 5.00 - 18.00

Flag leaf length (fll) 33.38 49.19 ** 32.89 19.23 - 44.40

Panicle length (pl) 25.23 26.44 ns 25.03 18.33 - 27.67

Grains per panicle (gpp) 140.94 220.61 ** 162.40 42.67 - 210.33

Percent seed set (pss) 94.12 92.52 ns 93.55 60.38 - 97.67

1000-grain weight (gw) 22.2 26.8 ** 23.85 18.9 - 25.80

Grain yield per plant (gy) 25.13 23.42 ns 28.00 15.91 - 47.95

ns not significant
** Significant at p < 0.01
a Difference between two parents with t-test.

Data analysis. Descriptive statistics, mean comparison,
and correlation among the traits were calculated using
the Statistical Tool for Agricultural Research (STAR)
software. QTL mapping was performed using Single
Marker Regression implemented in QGene Ver. 4.3.8 [18].
Specific parameters were set for the mapping: the
population structure was BC3F2, the type of cross (mating
string) was “bbbs,” and the genotype symbols were
ABHxx-. Permutations of 10.000 iterations were used to
determine the threshold of the QTLs in QGene.
Subsequently, LOD values at p < 0.05 were used as the
threshold to determine the significance of the QTLs. The
visualization of marker genotypes along the chromosome
was performed using Graphical GenoTypes Ver. 2.0
(GGT).

Results and Discussion

Phenotypic evaluation. Consistent with a previous ex-
periment [2], B11143D showed a higher grains number,
higher grain weight, and lower panicle number
compared to Ciherang (Table 1). B11143D flowered
earlier than Ciherang (Table 1, Figure 2). The grain
yield of B11143D was similar to that of Ciherang with
means of 25.13 g and 23.42 g per plant, respectively
(Table 1). In the BC3F2 population, grain yield showed
transgressive segregation in both directions, as seen in
how the progenies had a grain yield that fell outside of
the range of either parent (the grain yield range in
progenies was from 15.91 to 47.95 g). Plant height,
panicle per plant, panicle length, and percent seed set
also showed transgressive segregation in both directions
(Table 1), indicating that the two parental lines con-
tribute favorable alleles for these traits. Flag leaf length,
grains per panicle, and 1000-grain weight showed trans-
gressive segregation in a negative direction (Table 1,
Figure 3), which indicates that B11143D, although
containing a superior phenotype for these traits, possesses

Figure 2. Plant Performance of Parental Lines and a
Randomly Selected BC3F2 Line (84 Days After
Planting)

hidden negative alleles [19]. These alleles show up in
the BC3F2 population in which 85% of the genome has
been fixed to other parental line, i.e., Ciherang.

Days to heading was the only trait that showed trans-
gressive segregation in a positive direction (there were
some BC3F2 individuals with days to heading longer
than two parents), indicating that, although it flowered
earlier than Ciherang, B11143D contributes alleles for
longer flowering time in the BC3F2 population. These
findings on transgressive segregation, regardless of
direction, show that the phenotype of a plant is only
a modest predictor of the number of superior alleles it
can contribute to the phenotype of interest, and that the
breeding paradigm needs to shift from selecting plants
on the basis of phenotype to evaluating them for the
presence of the chromosomal segments associated with
the desired traits [19].

BC3F2 B11143D Ciherang
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Table 2. Pearson’s Correlation Coefficients for Yield and Yield Components

Trait dth ph ppl fll pl gpp pss gw

ph -0.160a

ppl 0.497** -0.101

fll -0.139 0.243** -0.086

pl -0.069 0.309** 0.089 0.510**

gpp -0.048 0.198* 0.100 0.351** 0.653**

pss -0.099 0.124 -0.008 0.084 0.213* 0.507**

gw -0.123 0.118 -0.115 0.415** 0.470** 0.366** 0.338**

gy 0.288** 0.018 0.657** 0.163a 0.413** 0.592** 0.171a 0.204*

* Significant at P<0.01
** Significant at P<0.001
a Significant at P<0.05
bdth days to heading, ph plant height, ppl panicle per plant, fll flag leaf length (cm), pl panicle length (cm), gpp grains per panicle, pss
percent seed set (%), gw 1000-grain weight (g), gy grain yield per plant (g).

Ciherang

B11143D

BC3F2-177

BC3F2-138

BC3F2-297

Figure 3. Seed Performances of Parental Lines and 3
Representative BC3F2 Lines

Grain yield showed a strong positive correlation with
panicle number (r=0.657), moderate positive correla-
tions with grain number (r=0.592) and panicle length
(r=0.413), and weak positive correlations with grain
weight (r=0.204) and days to heading (r=0.288),
following the grouping of correlation value suggested
by previous research [20]. There was no correlation iden
tified between grain yield and plant height (Table 2).

These findings show that grain yield is associated more
with yield components than with phenology (days to
heading) or plant-type traits (plant height). Since grain
yield is a complex trait with low heritability, indirect
selection using DNA markers associated with yield
components may contribute a significant genetic gain.

Figure 4. Scoring of BC3F2 Lines for the Genotype of
RM28048 Marker. M: 100bp DNA Ladder, A:
Homozygous Ciherang, H: Heterozygous, B:
Homozygous B11143D

Determination of marker genotype. During analysis,
the Ciherang allele was scored as A and the B11143D
allele was scored as B. For RM28048, Ciherang showed a
single band with size of 82 bp, whereas B11143D
showed a single band with size of 94 bp (Figure 4). A
BC3F2 line was scored as A if it showed only the 82 bp
band, B if it showed only the 94 bp band, and H
(heterozygous) if it showed both bands (Figure 4). The
same scoring method was applied for the other 3 markers.

QTL analysis. A population of 200 BC3F2 plants deve-
loped from a selected BC3F1 plant was used for QTL
mapping. The selected BC3F1 plant was hetero-zygous
for the whole chromosome 12 and approximately 85%
of the area on chromosomes 1-11 had the same genotype
as Ciherang (Figure 1). Backcrossing was performed
three times to recover the chromosomal regions from
the recipient parent outside the chromosome 12 [21].
Recovery of the recipient parent’s chromosomal regions
was performed to minimize the effects of QTLs from
the donor parent on chromosomes 1-11 so that the QTL
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Table 3. Single Marker Analysis of Yield Components on a BC3F2 Population Derived from Ciherang х B11143D

Marker Genotype
Yield Components

ppl1 fll pl gpp pss gw gy

RM3472

A 9.58a2 32.78a 25.19a 160.22b 93.40a 23.60b 27.14a

H 9.82a 32.66a 24.95a 160.44b 93.21a 23.80b 27.97a

B 9.40a 33.56a 25.06a 169.39a 94.49a 24.20a 29.02a

LOD 0.35 0.78 0.38 1.00 0.35 3.00 0.30

R2 (%) 0.80 1.70 0.90 2.40 0.79 5.50 0.70

Add effect 0.10 -0.60 0.002 -4.30 -0.405 -0.30 -0.70

RM28048

A 10.00a 31.95b 24.92a 157.12b 93.40a 23.30c 26.44b

H 9.64a 33.08ab 25.05a 162.96ab 93.21a 23.90b 28.32ab

B 9.29a 33.71a 25.14a 168.01a 94.49a 24.50a 29.31a

LOD 0.58 1.00 0.20 1.60 0.30 11.50 1.30

R2 (%) 1.40 2.30 0.40 3.50 0.69 24.00 3.00

Add effect 0.36 -0.88 -0.12 -5.50 -0.42 -0.58 -1.44

RM28195

A 10.02a 32.26a 24.87a 156.88b 97.13a 23.30c 26.52b

H 9.57a 32.84a 25.07a 163.70ab 93.13ab 23.80b 28.25ab

B 9.42a 33.77a 25.17a 166.44a 89.28b 24.50a 29.27a

LOD 0.48 0.65 0.25 1.40 0.64 13.00 1.20

R2 (%) 1.10 1.50 0.60 3.00 1.50 26.00 2.40

Add effect 0.30 -0.75 -0.16 -4.80 -0.41 -0.60 -1.36

RM1986

A 10.08a 31.62b 24.86a 154.85b 97.83a 23.20c 26.22b

H 9.60a 32.87ab 25.02a 163.26a 93.08ab 23.80b 28.27ab

B 9.42a 34.15a 25.22a 167.72a 89.76b 24.50a 29.10a

LOD 0.52 1.90 0.51 2.20 0.10 13.00 1.25

R2 (%) 1.20 4.20 1.20 4.90 0.20 26.00 2.60

Add effect 0.34 -1.27 -0.19 -6.44 -0.20 -0.62 -1.45

1ppl panicle per plant, fll flag leaf length (cm), pl panicle length (cm), gpp grains per panicle, pss percent seed set (%), gw 1000-grain
weight (g), gy grain yield per plant (g)
2Different letters on the same column indicate statistical significant according to the test of Duncan 5%.

on chromosome 12 could be handled as a single
Mendelian factor [22], and so the progenies from the
heterozygote for the QTL could be used for mapping by
evaluating the four polymorphic markers on
chromosome 12 (RM3472, RM28048, RM28195 and
RM1986).

Depending on genome size and marker spacing, an
LOD threshold between 2 and 3 is required to ensure an
overall false positive rate of 5% [23], indicating a 5%
risk of concluding that an association between a marker
and a trait exists when there is no actual association. In
this study, 10,000 permutations for each trait at an
experiment-wise significance level of 0.05 provided an
LOD threshold requirement of 3.00 to declare a
significant association between a marker locus and a
QTL. Based on the LOD score, a major QTL was
identified as explaining 26% of the 1000-grain weight
variation in the intervals between RM28048 (position
53.5 cM), RM28195 (position 62.2 cM), and RM1986
(73 cM), in which B11143D contributed the favorable

allele (Table 3 and Figure 5). The association between
grain weight and RFLP markers located on chromosome
12 was reported in a previous study that used a
population derived from a cross between Zhenshan97
and Minghui63 [24], although it was categorized as a
suggestive QTL, given that the LOD score was 2.6 and
the R2 value was 2.2% [25].

Implication for breeding and gene discovery. The
major QTL for grain weight identified in this study will
be useful for marker-assisted selection, since this QTL
contributed 26% of the grain weight variation and is
also detected in different genetic backgrounds [24].
Application of marker-assisted selection for backcross
breeding has been successful in the improvement of
traits controlled by one or a few QTLs with a large
effect [21]. The consistency of the QTL region from this
experiment and in another study [24] using different
genetic backgrounds provides confidence that this QTL
will be effective for improvement of grain weight on
diverse rice varieties. In these primary mapping works,
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Figure 2. Single Marker Analysis for 1000-grain Weight
(gw) of Chromosome 12 in a BC3F2 Population
Using Four SSR Markers: RM3472 (LOD: 3.00;
R2: 5.50%; Add: -0.30), RM28048 (LOD: 11.50;
R2: 24%; Add: -0.58), RM28195 (LOD: 13; R2:
26%; Add: -0.60), and RM1986 (LOD: 13; R2:
26%; Add: -0.62)

(equal to 4.9 Mb in rice [26]). Currently, a large
population (> 1000 individuals) of BC3F3 derived from
a heterozygous BC3F2 line for the region flanked by
RM28048 and RM1986 is being developed to perform
the first fine mapping. Additional markers, including
SSR and SNP, within the region flanked by RM28048
and RM1986 will need to be genotyped on the large
BC3F3 population to allow for identification of rare
recombinants. These recombinants will facilitate delimi-
tation of the QTL to a smaller region of around 5-10
cM. The second fine mapping will then be performed to
delimitate the QTL into a region of 1 cM (equal to 244
kb in rice [26]). With a gene density of one gene per 9.9
kb in rice [27], 244 kb may contain approximately 25
genes. This relatively small number of genes will allow
for selection of the candidate genes based on their
predicted functions, and the ability to proceed with
validation of gene cloning using reverse genetics
approaches, such as targeted mutation, silencing, or
overexpression.

Conclusions

A major QTL for grain weight was identified on
chromosome 12 at position 53.5 cM-73.0 cM in a
population derived from Ciherang and B11143D. This
major QTL is potentially useful for marker-assisted
selection to improve the yield potential of modern rice
varieties, especially for the 1000-grain weight trait, and
it provides a primary target for fine mapping and
identification of candidate genes responsible for the
trait.
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