The New Ropanasuri Journal of Surgery

Volume 6 | Number 1

6-26-2021

Management of Pararenal Aortic Aneurysms : A Literature Review

Hilman Ibrahim
Department of Surgery, Faculty of Medicine Universitas Indonesia, hilmanibrahim@yahoo.com

akhmadu muradi
Department of Surgery, Faculty of Medicine Universitas Indonesia, akhadumuradi@gmail.com

Ihza Fachriza
Department of Surgery, Faculty of Medicine Universitas Indonesia, ihzafachriza@gmail.com

Follow this and additional works at: https://scholarhub.ui.ac.id/nrjs

Part of the Cardiovascular Diseases Commons, Surgery Commons, and the Surgical Procedures, Operative Commons

Recommended Citation
DOI: 10.7454/nrjs.v6i1.1098
Available at: https://scholarhub.ui.ac.id/nrjs/vol6/iss1/5

This Literature Review is brought to you for free and open access by the Faculty of Medicine at UI Scholars Hub. It has been accepted for inclusion in The New Ropanasuri Journal of Surgery by an authorized editor of UI Scholars Hub.
Management of Pararenal Aortic Aneurysms: A Literature Review

Hilman Ibrahim, Akhmadu Muradi, Ibiza Fachriza

Department of Surgery, Faculty of Medicine Universitas Indonesia.

Abstract

Abdominal aortic aneurysms (AAA) are the most common group of aortic aneurysms. Pararenal aortic aneurysm (PAA) is a classification of AAA where there is no normal aortic segment between the renal artery and the proximal border of the aneurysm. This group has a prevalence of around 20% of all AAA cases. In open repair (open surgery), PAA requires suprarenal clamps or even supraceliac which causes high morbidity. In endovascular procedures, PAA presents difficulties due to the absence of a landing zone to place the graft and the possibility of reintervention after action. A literature review is needed to discuss the strengths and weaknesses of each treatment. A review enrolling 7 focused on endovascular procedures for PAA and outcomes including mortality and morbidity with long-term follow-up.

Keywords: pararenal, aortic aneurysm, open repair, endovascular procedures

Introduction

An aortic aneurysm is a blood vessel disease that causes disability and death. Based on the anatomical location, 62.3% of aortic aneurysms are found in the abdominal aorta, an abdominal aortic aneurysm (AAA).1 An aortic aneurysm is called a pararenal aortic aneurysm (PAA) if there is no normal segment of the aorta below the renal artery or if the aneurysm involves at least one orifice of the renal artery.2 PAA is estimated to account for 20% of all AAA cases.2 The PAA is a complex group to deal with, challenging to expose at the time of surgery, causing increased operating time and blood loss properly. Suprarenal aortic occlusion required during surgery poses a risk of renal parenchymal ischemia and myocardial damage due to increased cardiac output. The kidney disorders and hypertension that often accompany it also increase the risk of surgery or postoperative recovery.2

PAA also has difficulties to be managed with endovascular procedures. Endovascular procedures require at least a segment of the normal aortic neck proximal from the 15 mm long aneurysm called the "landing zone," which is not available on the PAA. No studies have compared open and endovascular surgical procedures for PAA. Currently, there is no research on PAA in Indonesia. A study on AAA conducted by Jamtani in 2017 revealed the anatomical characteristics of EVAR patients at Cipto Mangunkusumo General Hospital, a national referral hospital in Indonesia. The study provides data that AAA patients with short proximal neck aneurysms (10-15 mm) amounted to 12.7%.3 PAA can be a health problem that found more frequently in Indonesia and improved vascular surgical care. This article aimed to review the treatment of PAA, and the outcome based on previous studies.

We carried out a literature search on the current procedures of pararenal aortic aneurysms on some databases (PubMed, Cochrane, EBSCO, and ProQuest) using keywords "pararenal aortic aneurysm," "endovascular," "open surgical" until 2019. Eligible criteria were systematic reviews, meta-analysis, randomized control trials, cohort studies, case reports, and case series with the subject patients of pararenal aortic aneurysms. They were assessed for the type of study, the subject's characteristics, the outcome and analyzed using the content analysis method. In addition, we reviewed the secondary data based on the findings and the advantages and disadvantages to find consideration of the options based on the outcome of the PAA procedures. Out of 158 articles found on searching, 15 articles met the criteria. The literature search proceeded as shown in figure 1 and summarized in table 1.

Figure 1. Literature search

Open Repair
The first study to report on PAA management is the case series report by Qvarfordt et al. The study revealed that PAA is a problematic group of aneurysms to treat. The difficulty in exposing the surgical area leads to a prolonged operation time and an increased chance of blood loss. Suprarenal occlusion that must be done also creates a risk of kidney damage due to ischemia and myocardial damage due to increased afterload. Most of the approach chosen was the transabdominal approach (92%), with the rest (8%) was a thoracoretroperitoneal aortic exposure approach. The majority of subjects were performed suprarenal aortic occlusion. Blood vessel reconstruction was performed in the form of aortic reconstruction (infrarenal aortic graft, infrarenal aortic prosthetic graft plus transaortic endarterectomy). The mortality in the study was 1.3%, while the morbidity was 22%, with the leading cause being decreased renal function.

Table 1. Studies' Characteristics

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Year</th>
<th>Sample</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Output</th>
<th>Level of Evidence</th>
<th>Results</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qvarfordt et al, 1986</td>
<td>77</td>
<td>Case series</td>
<td>Open surgery</td>
<td>Perioperative mortality, postoperative morbidity, decreased renal function</td>
<td>4</td>
<td>Mortality 1.3%</td>
<td>Morbidity 28% Decreased of renal function 23%</td>
</tr>
<tr>
<td>2</td>
<td>West et al, 2006</td>
<td>247</td>
<td>Case series</td>
<td>Open surgery</td>
<td>30-day mortality of cardiac, pulmonary, and renal complications</td>
<td>4</td>
<td>30-day mortality 2.5% Heart complications 13% Postoperative complications 16% Decreased renal function 22%</td>
<td>EVAR vs open surgery</td>
</tr>
<tr>
<td>3</td>
<td>Sultan et al, 2011</td>
<td>118</td>
<td>Retropercutaneous cohort</td>
<td>Endovascular open surgery</td>
<td>3-year survival without aneurysm-related death, 3 years–free of major adverse clinical events</td>
<td>2b</td>
<td>EVAR vs open surgery</td>
<td>Mortality 0.4% vs 4.5% (p = 0.122) Mortality 30 days 15% vs 50% (p = 0.052) Decreased renal function 3.8% vs 15.2% (p = 0.044)</td>
</tr>
<tr>
<td>4</td>
<td>Tassi et al, 2011</td>
<td>2228</td>
<td>Case series</td>
<td>Open surgery</td>
<td>Morbidity and early mortality at 2 periods</td>
<td>4</td>
<td>Decreased mortality</td>
<td>Decreased renal function 14%</td>
</tr>
<tr>
<td>5</td>
<td>Quintess-Boldt et al, 2017</td>
<td>31</td>
<td>Case series</td>
<td>Endovascular (Percutaneous technique)</td>
<td>Technical success, survival, endoleak</td>
<td>4</td>
<td>Technical success 90% 30 days survival 100% Survival over 30 days occurred in 3 patients (cause is not related to aneurysm)</td>
<td>EVAR vs open surgery</td>
</tr>
<tr>
<td>6</td>
<td>Delcotte et al, 2014</td>
<td>8 studies</td>
<td>Systematic review</td>
<td>Open vs endovascular surgery</td>
<td>30 days mortality, postoperative renal failure</td>
<td>2a</td>
<td>30-day mortality 2.5% vs 1% Postoperative renal failure 12% vs 9.6%</td>
<td>Postoperative acute renal failure 60%</td>
</tr>
<tr>
<td>7</td>
<td>Kabani et al, 2014</td>
<td>245</td>
<td>Retropercutaneous cohort</td>
<td>Open surgery</td>
<td>30-day mortality, Postoperative acute kidney injury</td>
<td>2b</td>
<td>30-day mortality 3.5% Postoperative acute renal failure 60%</td>
<td>Post-action occlusion occurred in 6.5%</td>
</tr>
<tr>
<td>8</td>
<td>Uusi, et al, 2015</td>
<td>7 studies</td>
<td>Systematic review</td>
<td>Endovascular (Chinney graft technique) Open surgery</td>
<td>Occlusion of the monovascular vessels</td>
<td>2a</td>
<td>30-day mortality 2.5% Postoperative acute renal failure 1% EVAR vs open surgery: 30-day mortality 2.7% vs 5.7% (p = 0.126) 30-day mortality 10% vs 35% (p = 0.001)</td>
<td>EVAR vs open surgery:</td>
</tr>
<tr>
<td>9</td>
<td>Ferrante et al, 2016</td>
<td>200</td>
<td>Retropercutaneous cohort</td>
<td>Open surgery</td>
<td>Mortality and complications</td>
<td>2b</td>
<td>30-day mortality 2.5% 30-day mortality 2.5% vs 5.7% (p = 0.126) 30-day mortality 10% vs 35% (p = 0.001)</td>
<td>EVAR vs open surgery:</td>
</tr>
<tr>
<td>10</td>
<td>Orr et al, 2016</td>
<td>1005</td>
<td>Retropercutaneous cohort</td>
<td>Open vs endovascular surgery</td>
<td>Mortality and morbidity rate</td>
<td>2b</td>
<td>Early output: Acute kidney injury mass case 18.7% Hemodialysis 0.9% Further output: Chronic renal failure 15.9%</td>
<td>Open surgery vs EVAR</td>
</tr>
<tr>
<td>11</td>
<td>Vantasschmeren et al, 2018</td>
<td>214</td>
<td>Case series</td>
<td>Open surgery</td>
<td>30-day mortality and morbidity</td>
<td>4</td>
<td>30-day mortality 3.4% 30-day mortality 21.5%</td>
<td>Patent graft in the absence of endoleak</td>
</tr>
<tr>
<td>12</td>
<td>Stella et al, 2017</td>
<td>1</td>
<td>Case report</td>
<td>Endovascular (Chinney technique) Open surgery</td>
<td>Technical success and vessel patency</td>
<td>5</td>
<td>30-day mortality 21.5%</td>
<td>Patent graft in the absence of endoleak</td>
</tr>
<tr>
<td>13</td>
<td>Sugimoto et al, 2017</td>
<td>451</td>
<td>Retropercutaneous cohort</td>
<td>Open surgery</td>
<td>Hemodialysis cases</td>
<td>2b</td>
<td>Early output: Acute kidney injury mass case 18.7% Hemodialysis 0.9% Further output: Chronic renal failure 15.9%</td>
<td>EVAR vs open surgery:</td>
</tr>
<tr>
<td>14</td>
<td>Fortico et al, 2018</td>
<td>200</td>
<td>Retropercutaneous cohort</td>
<td>Open vs endovascular surgery (Percutaneous technique)</td>
<td>Survival rates and perioperative complications</td>
<td>2b</td>
<td>EVAR vs open surgery: Major Adverse Event 21.3% vs 9.8% (p = 0.033) Acute kidney injury 5.6% vs 4.3% (p = 0.99)</td>
<td>EVAR vs open surgery:</td>
</tr>
<tr>
<td>15</td>
<td>Lochan et al, 2018</td>
<td>1191</td>
<td>Retropercutaneous cohort</td>
<td>Open vs endovascular surgery (Percutaneous technique and chimney technique)</td>
<td>Mortality and morbidity</td>
<td>2b</td>
<td>FEVAR vs EVAR vs Open surgery: Mortality 2.47% vs 7.32% vs 6.13% (p = 0.13)</td>
<td>The research subjects in this study were patients with juxtarenal, pararenal, and suprarenal aneurysms.</td>
</tr>
</tbody>
</table>

Another study by Ferrante et al. reported 20 years of experience with open aneurysms. The approach taken was the Williams-Sicard left flank incision (77%), with the rest being a transperitoneal and thoracophrenolaparotomy approach. Proximal aortic control was performed with suprarenal clamping in 80% of patients, supra celiac clamping in 17.5% of patients, and supra mesenteric clamping in 2.5% patients. The 30-day mortality was 2.5%, with the leading causes being intraoperative bleeding (aortic rupture at clamping site and renal artery rupture) and acute myocardial infarction. The study concluded that 30-day mortality was associated with duration of surgery, duration of visceral ischemia, total aortic clamp, supra visceral clamp site, intraoperative blood loss, intraoperative blood transfusion, and cardiac complications. As many as 51% of subject patients experienced at least one complication. The most common complications were a respiratory failure (14%), cardiac complication (13%), and postoperative acute kidney failure (11%). In long-term follow-up, the mean survival was 50
months, with the leading cause being cardiovascular disease. Age, history of AMI, COPD, CrCl <40 mL/minute preoperatively, postoperative cardiac complications, and peripheral artery disease (PAD) were predictors associated with death in long-term follow-up. The study by van Lammeren et al. enrolled 214 patients who underwent elective surgery for PAA. The aortic clamp was positioned on the celiac (16.8%), suprarenal (58.4%), and juxta renal (24.8%). The 30-day mortality was 3.4%, with causes of death including intestinal ischemia, myocardial infarction, and subsequent cardiac failure, rebleeding, pneumonia, and multiple organ failure. The 30-day morbidity was 27.1%, with the majority [of the cause] due to pneumonia. There were 2.8% of patients who eventually needed permanent haemodialysis. In long-term follow-up, the 5-year survival rate was 74.2%.

Sugimoto et al. conducted a study in 2018 involving 108 patients. The median duration of surgery was 268 minutes. Proximal clamps were applied in supra celiac (5.6%), suprarenal (31.5%), and inter-renal (62.9%). The median renal ischemic duration was 33 minutes, with 22.2% of patients had left renal vein separated to visualize the proximal clamping sites better. The median length of stay was 13 days. Mortality was noted due to postoperative multiple organ failure. There were 15.7% of patients who eventually developed chronic kidney dysfunction and required permanent hemodialysis. This has been shown to occur in patients who had previously been diagnosed with stage 3-4 of CKD.

Endovascular Procedures

The use of conventional EVAR in the PAA case has a reintervention rate of 26.9% and a conversion rate of 6.9%. From the findings of the article obtained, the endovascular methods that are often discussed are the chimney endovascular aneurysm repair (cEVAR), fenestrated endovascular aneurysm repair (fEVAR), and branched endovascular aneurysm repair (bEVAR) techniques.18

The chimney technique has become an option for PAA management. Chimney grafts are located between the wall of the aorta and the endovascular prosthesis so that it is still possible to keep the graft-covered visceral artery supplied with blood. If it leads to the cranial, it is called a chimney, whereas if it leads to the caudal, it is called a periscope. With this technique, PAA can be managed with endovascular procedures by revascularization of the superior mesenteric artery and both renal arteries. This procedure begins with catheterization of the visceral arteries with stiff wires and covered stents, then the stents and endovascular prosthesis are simultaneously dilated (kissing balloon) to prevent collapse and provide a landing zone for the aortic stent graft. An issue discussed was a type I endoleak because the landing zone was not optimal. A study by Donas et al. reported that type I endoleak occurred in 6 of 72 patients.19 No mortality occurred, besides there was no difference in the number of prostheses to patient outcome.20

The fenestrated stent graft is a prosthesis with a 5–8 mm gap, adapted to each patient’s anatomical variation. During the procedure, a stent-graft will be used to connect the slits to the visceral arteries. The fenestrated graft should be designed with 3D vascular software to obtain precise measurements. These slits are best suited to be used for healthy segments of the aorta so that they are in direct contact with the walls of the aorta and then the branches of the visceral blood vessels to prevent endoleaks. In contrast, branched prostheses are said to be suitable for cases where the visceral arteries are in the segment of the aneurysm. These branches are used to bridge the gap between the stent graft and the wall of the aorta. This system can be separate or consist of several module parts. In addition, these branches can be either inside or outside of the prosthesis. In this review, there were limited studies on endovascular procedures that have specifically addressed PAA. Other studies that were excluded discussed endovascular procedures of complex aortic aneurysms with a small proportion of PAA. The studies found were in the form of 1 case report, 1 case series, and 1 systematic review, showing no clear indication of the choice of endovascular procedures. The study also failed to reveal the outcome of endovascular procedures due to the study design and sample size. However, the systematic review obtained successfully revealed the risk of occlusion after the chimney graft procedure. Usai et al. performed a systematic review of graft occlusion in patients undergoing cEVAR. Chimney graft occlusion is a rare complication and is generally temporary.10 The exact mechanism is unknown, but most of them are due to thrombosis, whereas stent deformation or fracture is rarely the cause. Several possibilities are an insufficient expansion of chimney grafts which can cause blood flow disruption that leads to occlusion. In addition, congenital hypercogulopathy may also affect the patency of the chimney graft. The study found that one patient died due to intestinal ischemia.

Open surgery vs. Endovascular Procedures

Five studies have compared open surgery and endovascular procedures. The study by Sultan et al. in 2007 involved 118 patients. The study showed no perioperative mortality in the endovascular method group compared to the open surgery method, which had perioperative mortality of 4.5%. There was no aneurysm rupture in either method, but the aneurysm-related survival in patients with the endovascular method was higher than in open surgery (100% vs. 92.4%), but comorbidity was more common in EVAR (overall survival 57.1% vs. 84.8%). Another study from Orr et al. in 2016 enrolled 1005 patients with aneurysms. In this study, it was found that there was no significant difference in mortality rates between endovascular procedures and open surgery (2.7% vs. 5.7%). Endovascular procedures have a shorter ICU length of stay and an overall hospital length of stay. The 30-day morbidity was significantly better with the endovascular procedures when compared with open surgery (16% vs. 35%, p <0.001). The main cause of morbidity being heart or respiratory failure (7.6% vs 21%, p = 0.001), levels of kidney insufficiency or failure (3.8% vs 9.9%, p = 0.009), and levels of pneumonia (1.5% vs 6.8%, p = 0.004).12

A study by Fiorucci et al. in 2019 compared open surgery with fenestrated EVAR methods. This study found that patients who underwent fEVAR were significantly older and had a higher frequency of coronary artery disease and a history of the previous stroke. In addition, open surgery had a higher risk of perioperative morbidity (OR 2.5, 95% CI 1.09 to 5.71, p = 0.033). This finding was confirmed in a trend-adjusted analysis, in which cardiac complications were also higher after open surgery (OR 12.8, 95% CI 0.07–0.21, p = 0.02). We identified no difference in perioperative mortality (2.2% for FEVAR vs. 1.9% for open surgery). The mean follow-up time was 50 months (range 0–119).16

A study by Locham et al. enrolled 1191 patients who underwent repair of abdominal aortic aneurysms. This study found no significant difference in 30-day mortality in the three groups (fEVAR: 2.47% vs. cEVAR: 7.32% vs. open surgery: 6.13%, p = 0.13) but with complications such as renal failure. Kidney failure complications in open surgery 9.36% vs. cEVAR group 6.10% vs. fEVAR group 1.85%, p = 0.003, whereas cardiopulmonary complications in open surgery had a prevalence 19.77% vs. cEVAR group 3.66% vs. fEVAR group 4.94%, p <0.001. This study found that open surgery is associated with a two to five-fold increase in mortality compared to other groups.17 A study by Belczak et al. in 2014 revealed that open surgery has higher mortality and decreased/impaired kidney function without significant differences.8

Summary
Endovascular treatment has benefits in lower mortality, shorter ICU length of stay and overall length of stay, better morbidity, and suitable for an older patient with more comorbidity than open surgery. In addition, open surgery has higher cardiopulmonary and kidney complications that were increasing morbidity and mortality, although some studies show insignificant differences. Based on the existing literature, we concluded that endovascular treatment is recommended for PAA.

Disclosure

Authors declare no conflict of interest

References