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Abstract 
 

This paper presents trajectory shaping of a surface-to-surface missile attacking a fixed with terminal impact angle 
constraint. The missile must hit the target from above, subject to the missile dynamics and path constraints. The 
problem is reinterpreted using optimal control theory resulting in the formulation of minimum integrated altitude. The 
formulation entails nonlinear, two-dimensional missile flight dynamics, boundary conditions and path constraints. The 
generic shape of optimal trajectory is: level flight, climbing, diving; this combination of the three flight phases is called 
the bunt manoeuvre. The numerical solution of optimal control problem is solved by a direct collocation method. The 
computational results is used to reveal the structure of optimal solution which is composed of several arcs, each of 
which can be identified by the corresponding manoeuvre executed and constraints active. 
 
Keywords: trajectory shaping, direct collocation, optimal control, minimum integrated altitude 

 
 

 
1. Introduction 
 
Trajectory shaping of a missile is an advanced approach 
to missile guidance which aims at computing the whole 
trajectory in an optimal way. Trajectory shaping has 
been used by some researchers to improve the precision 
of the missile trajectory during manoeuvre. To increase 
warhead effectiveness and survivability again missile 
defence system the optimization of terminal impact 
angle is necessary to modulate trajectories of the 
missile. Furthermore it can be use to enhance the overall 
productivity and the effectiveness of the operation, 
especially to avoid from increasing anti-missile 
capability [1]. 
 
Ryoo, Cho and Tahk [2] have studied an optimal 
guidance law for constant speed missile with constraint 
on the impact angle and control input. Optimal guidance 
law with weights on the terminal velocity has been 
investigated by Ben-Asher and Yaesh [3]. The 
computational analysis for the terminal bunt manoeuvre 
for the minimum altitude and time-optimal along the 
optimal trajectory for surface to surface missile 
guidance based on the Pontryagin's Minimum Principle 
was given by Subchan et al. [4,5]. 
 
This paper presents some computational results of the 
optimal trajectory of missile which minimising the 
integrated altitude along the optimal trajectory. 

Furthermore, we investigate the missile trajectory by 
varying the terminal impact engagement. The essence of 
approach is to compute an optimal trajectory together 
with the associated control demand. In other words, for 
given launch and strike conditions, find a missile 
trajectory which hits the target in a pre-defined way and 
shapes the missile's flight in an optimal fashion. This 
setting leads naturally to expressing the guidance 
problem as an optimal control problem. Hence the 
solution approach for the trajectory shaping involves 
computational optimal control.  
 

 
Figure 1.  Definition of the missile axes and angles. Note 

that L   is the normal aerodynamic force and D 
is the axial aerodynamic force with respect to a 
body-axis frame, not lift and drag 
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The dynamic equations of a point mass missile moving 
in the vertical plane over flat non-rotating earth can be 
given as follows 

V
g

mV
L

mV
DT γ

ααγ
cos

cossin −+
−

=&   (1a) 

γαα sinsincos g
m
L

m
DTV −−

−
=&   (1b) 

γcosVx =&       (1c) 

γsinVh =& ,                  (1d) 
where t is the actual time, fttt ≤≤0 with 0t as the 

initial time and ft  as the final time. The state variables 
are the flight path angle γ , speed V, horizontal position 
x and altitude h of the missile. The thrust magnitude T 
and the angle of attack α  are the two control variables 
(see Figure 1). The aerodynamic forces D and L are 
functions of the altitude h, velocity V and angle of 
attack α . The following relationships have been 
assumed: 
 
Axial aerodynamic force. The drag D is written in the 
form 

refd SVCVhD 2

2
1),,( ρα =   (2) 

.           32
2

1 AAACd ++= αα   (3) 
Note that D is not the drag force. 
Normal aerodynamic force. The lift L is written in the 
form 

refl SVCVhL 2

2
1),,( ρα =     (4) 

21           BBCl +α= ,              (5) 
where ρ  is air density given by    

32
2

1           ChChC ++=ρ ,  (6) 
and refS is the reference area of the missile; m denotes 
the mass and g the gravitational constant, see also Table 
1. Note that L is not the drag force.  

 
 

Table 1.  Physical modelling parameters 
 

Quantity Value Unit 
m 1005 Kg 
g 9.81 m/s2 

Sref 0.3376 m2 
A1 -1.9431  
A2 -0.1499  
A3 0.2359  
B1 21.9  
B2 0  
C1 3.312 10-9 kg m-5 

C2 -1.142 10-4 kg m-4 
C3 1.224 kg m-3 

 

Table 2. Boundary conditions and constraints 
 

Quantity Value Unit 
Vmin 200 m/s 
Vmax 310 m/s 
Lmin -4 g 

Lmin 4 g 
hmin 30 m 

Tmin 1000 N 
Tmax 6000 N 

 
Boundary conditions. The initial and final conditions 
for the four state variables are specified:  

ff

ff

ff

ff

hthhh

xtxxx

VtVVV

t

==

==

==

γ=γγ=γ

)(                 )0(

)(                )0(

)(                )0(

)(                 )0(

0

0

0

0

  (7) 

In addition, constraints are defined as follows: 
• State path constraints 

maxmin VVV ≤≤    (8) 
hh ≤min    (9) 

• Control path constraint 
maxmin TTT ≤≤    (10) 

• Mixed state and control constraint 

maxmin L
mg
LL ≤≤   (11) 

where minL  and maxL  are normalized, see Table 2. 
 
Performance Index. The mission is to hit a fixed target 
while minimising the missile exposure to anti-air 
defences. The problem is to find the trajectory of a 
generic cruise missile from the assigned initial state to a 
final state with the minimum integrated altitude along 
the trajectory. The objective can be formulated by 
introducing the performance criterion:                                                     

 
 

 0
∫= ft

t
hdtJ                  (12) 

 
2. Method 
 
Direct method approach is based on the discretisation of 
both the state and/or control variables. A variety of 
direct method has been developed and applied. Gradient 
algorithms were proposed by Kelley [6] and by Bryson 
and Denham [7]. Pytlak solved a state constrained 
optimal control problem using a gradient algorithm and 
applied it for some problems (see [8], [9]). Hargraves 
and Paris [10] reintroduced the direct transcription 
approach, by discretising the dynamic equations using a 
collocation method. A cubic polynomial is used to 
approximate the state variables and linear interpolation 
for the control variables. The collocation scheme was 
originally used by Dickmanns and Well [11] to solve. 
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TPBVPs. Seywald et al. introduced an approach based 
on the representation of the dynamical system in terms 
of differential inclusions. This method employs the 
concepts of hodograph space and attainable sets (see 
[12,13]). Direct transcriptions have been presented in 
detail by many researchers, e.g., Betts et al. [14,15], 
Enright and Conway [16], Herman [17], Tang and 
Conway [18], Ross and Fahroo [19], Elnagar et al. [20, 
21]. 
 
The basic approach for solving optimal control problem 
by direct collocation approach is to transform the 
optimal control problem into sequence of nonlinear 
constrained optimisation problems by discretising of the 
state and control variables. The duration time of the 
optimal trajectory is divided into subinterval as follows: 

fk tttttt =<<<= Κ3210  
The state and control variables at each node are 

)( jj txx = and )( jj tuu = such that the state and control 
variables at the nodes are defined as nonlinear 
programming variables: 

)](,),(),(,),([ 11 kk txtxtutuY ΛΛ=   (13) 
The controls are chosen as piecewise linear 
interpolating functions between )( jtu  and )( 1+jtu  for 

1+≤≤ jj ttt  as follows: 
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The value of the control variables at the centre is given 
by 
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The piecewise linear interpolation is used to prepare for 
the possibility of discontinuous solutions in control. The 
state variable )(tx  is approximated by a continuously 
differentiable and piecewise Hermite-Simpson cubic 
polynomial between )( jtx and )( 1+jtx  on the interval 
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The value of the state variables at the centre point of the 
cubic approximation 
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and the derivative is 
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In addition, the chosen interpolating polynomial for the 
state and control variables must satisfy the midpoint 
conditions for the differential equations as follows: 

0)()),(),(( ,,,, =− jcappjcjcappjcapp txttutxf &  (18) 
The optimal control problem now can be defined as a 
discretised problem as follows: 
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where appapp ux , are the approximation of the state 
and control, constituting Y in (19). This above 
discretisation approach has been implemented in the 
DIRCOL [22,23] package which employed the 
sequential quadratic programming method SNOPT by 
Gill et al. [24]. 
 
4. Results and Discussion 
 
In this example, the direct method based on DIRCOL 
package is used to solve the optimal trajectory. The 
missile assumes to be launched from ship and therefore 
the variation of terminal flight-path impact angle is used 
to investigate the different optimal exposure along the 
trajectory. The boundary conditions are given as 
follows: 

m 0)(            30m)0(

m 10000)(             m 0)0(

m/s 310)(      m/s 272)0(

deg 90,80,70,60,45)(           deg 0)0(
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f

f
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f
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Table 3.  Performance index and final time 
 

Case – final flight-
path angle (deg) 

Performance 
index (m sec) 

Terminal 
time (sec) 

-45 6210.11114       34.648947     
-60 12654.6551       36.190966    
-70 18160.0398       37.608110    
-80 24511.1134       39.343370 
-90 31596.3404       41.390514     

 



MAKARA, TEKNOLOGI, VOL. 11, NO. 2, NOVEMBER 2007: 65-70 
 
68 

0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

1

time (sec)

fli
g

h
t-p

a
th

 a
ng

le
 (

ra
d

)

γ
f
=-45 deg

γ
f
=-60 deg

γ
f
=-70 deg

γ
f
=-80 deg

γ
f
=-90 deg

 
Figure 2.  Flight-path angle versus time histories 
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Figure 3.  Speed versus time histories 
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Figure 4.  Altitude versus down-range histories 
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Figure 5.  Altitude versus time histories 
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Figure 6.  Normal acceleration versus time histories 
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Figure 7.  Angle of attack versus time histories 
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Based on Figures 2-7, an attempt is made to identify 
characteristic arcs of the trajectory, classify them 
according to the constraints active on them, and suggest 
physical/mathematical explanations for the observed 
behaviour. In this analysis the missile is assumed to be 
launched horizontally from the minimum altitude 
constraint.  
 
The trajectory is split into three subintervals: level 
flight, climbing and diving. Each of the trajectory arcs 
corresponding to the subintervals is now discussed in 
turn. 
 
First arc: minimum altitude flight. The missile 
launches at h=30m and therefore the altitude constraints 
are active directly at the start of the manoeuvre. In this 
case the altitude of the missile remains constant on the 
minimum value minh  (see Figures 4 and 5) until the 
missile must start climbing while the thrust is on the 
maximum value. The flight time of first arc depends to 
the final-speed fγ .  
 
Equation (1d) equals zero during this flight because the 
altitude remains constant. It means that the flight path 
angle γ  equals zero because the velocity V  is never 
equal to zero during flight (see Fig. 3). In addition, 

0)0( =γ  causes the derivative of the flight path angle γ& 
to be equal to zero (see Fig. 2). The dynamics equation 
(1) is therefore reduced as follows: 

0cossin =−α+α
−

=γ g
mV
L

mV
DT&    (21a) 

α−α
−

= sincos
m
L

m
DTV&     (21b) 

Vx =&        (21c) 
0=h&                   (21d) 

We now consider the consequences of the right-hand 
side of equation (21a) being zero. This condition means 
that the normal acceleration L/m remains almost 
constant, because the angle of attack α  is very small. 
The first term on the right-hand side of equation (21a) is 
small, because 0sin ≈α≈α  and we are left 
with gmL ≈/ due to 1cos ≈α . During this time speed 
increases, because for small α . 

   as   ,0 DT
m

DTV >>
−

≈&  

This in turn means that the angle of attackα  slowly 
decreases in accordance with equation (4) and in order 
to maintain L/m approximately be equal to g (see 
Figures 6 and 7). 
 
Second arc: climbing. The missile must climb 
eventually in order to achieve the final condition of the 
flight path angle fV . Since altitude above minh  is 
penalised, the climb occurs as late as possible, so must 

be done sharply and last as short as possible. Hence, at 
the beginning of ascent the angle of attack must increase 
to facilitate a rapid nose up motion and the thrust has 
the maximum value. 
 
During this time, the speed keeps decreasing while the 
altitude h increase. While rapid climbing is necessary, 
the missile should also turn over to begin its dive as 
soon as possible, so that the excess of altitude (above 

minh ) is minimised.  
 
Third arc: diving. At the end of the manoeuvre the 
missile should hit the target with a certain speed fV . 
The speed during turnover is smaller than final speed 

fV  so the speed must increase and hence the thrust 
keeps on the maximum value. It means the thrust will 
facilitate the missile’s arrival on the target as soon as 
possible. 
 
At the beginning of diving the minimum normal 
acceleration constraints is active and keeps on saturation 
until the missile hits the target (see Fig. 6). Obviously, 
the altitude goes down to reach the target 
( 00 <→<γ h& ), while the speed goes up to satisfy the 
terminal speed condition fV . Finally, the missile 
satisfies the terminal condition of the manoeuvre 
approximately tf after firing. The performance index is 
smaller for the bigger final flight-path angle, similarly 
for the optimal manoeuvre time, see Table 3 for the 
detail. 
 
4. Conclusion 
 
The analysis of computational results for the minimum 
integrated altitude of a surface-to-surface missile 
guidance with varying terminal impact angle constraint 
is important from the operational viewpoint. Since the 
mission is to strike a fixed target while minimising the 
missile exposure to anti-air defences, one should 
consider both the type of target and the exposure of the 
missile during the manoeuvre. If the mission is to strike 
a bunker, it is important to hit the target with the 
maximum capability of the missile which means the 
missile must struck with vertical diving. If the target’s 
prosecution may lead to collateral damage, then a more 
measured impact is advisable, so that the impact angle 
should be greater. It is always important to avoid anti-
air defences during the manoeuvre, so optimal exposure 
must be taken into account.  
 
The general trajectory is split into three subintervals. 
The first arc is level flight. The thrust is on the 
maximum value and the minimum altitude constraint is 
active. This arc is the most difficult one to compute 
because the pure state constraint is active. DIRCOL 
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package can solve this arc and gives a good insight into 
the problem. 
 
In the second arc the missile must climb in order to 
achieve the final condition. The thrust keeps on the 
maximum value while the speed decreases. The altitude 
increases to gain enough position for diving in the next 
arc. 
 
The third arc is diving. The missile must gain the power 
to reach the target therefore the speed increase rapidly 
since the initial diving speed is lower than the final 
speed. The normal acceleration is saturated on the 
minimum value for this arc. 
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