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Abstract 

 
Low-density parity-check (LDPC) code is linear-block error-correcting code defined by sparse parity-check matrix. It is 
decoded using the massage-passing algorithm, and in many cases, capable of outperforming turbo code. This paper 
presents a class of low-density parity-check (LDPC) codes showing good performance with low encoding complexity. 
The code is constructed using difference families from combinatorial design. The resulting code, which is designed to 
have short code length and high code rate, can be encoded with low complexity due to its quasi-cyclic structure, and 
performs well when it is iteratively decoded with the sum-product algorithm. These properties of LDPC code are quite 
suitable for applications in future wireless local area network. 
 
Keywords: low-density parity-check codes, quasi-cyclic codes, difference families, combinatorial design, iterative 

decoding, wireless local area network 
 
 
1. Introduction 
 
Low-density parity-check (LDPC) code was invented by 
Gallager [1] and ignored more than thirty years due to 
limited computational resources. This code sparked 
much interest in coding theory community after the 
success story of iterative decoding implemented by 
turbo code [2] and its rediscovery by MacKay and Neal 
[3], who proved their near-capacity performances. 
LDPC code can allow data transmission at code rate that 
is closed to the capacity of the channel within 0.0045 
dB away from the Shannon limit [4]. 
 
LDPC code is error linear-block error-correcting code 
defined by a very sparse parity-check matrix H, which 
is characterized with very low number of ones in 
column and row. Gallager [5] described regular code 
defined by parity-check matrix with constant column 
and row weight. Such code was pseudo-randomly 
constructed by avoiding 4-cycles, which can degrade 
decoding performance. These results were extended by 
Luby et al. [6] to irregular code, which has non-constant 
row and column weights in H and was proved to 
outperform regular ones due to their capability by 
discarding code which contains 4-cycles. 
 
Contrary to turbo code, LDPC code has more 
reasonable decoding complexity in employing the 
message-passing algorithm, which involves passing 
probabilistic messages on a graph generated from the 
parity-check matrix. But, in performing the encoding 

algorithm, LDPC codes suffer from the computational 
complexity. In general, encoding is performed by matrix 
multiplication and so complexity is quadratic in code 
length. 
 
In this paper, we present a class of LDPC codes, which 
is designed to meet requirement of applications in 
wireless local area network (WLAN). We analyze 
LDPC code with short code length and high code rate, 
which reduces the computational complexity in 
encoding to achieve power saving and latency 
shortening. The code is constructed using algebraic 
approach derived from a method from combinatorial 
design, i.e. difference families [7]. The resulting codes 
have quasi-cyclic structures. In decoder, we make use of 
sum-product decoding algorithm [5].  
 
The remainder of the paper is outlined as follows. 
Section 2 provides the necessary theoretical background 
and design method for code construction. Section 3 
discusses design results which show performance of 
investigated code. Finally, some concluding remarks are 
presented in Section 4. 
 
2. Methods  
 
Low-Density Parity-Check Code 
LDPC code is a class of linear block code 
corresponding to the parity-check matrix H with very 
low density of ones. From the (n–k)×n matrix H, we can 
derive corresponding k×n generator matrix G, which 
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encodes k information bits into n codeword bits. The 
received codeword is decoded by (n–k) check nodes. A 
regular LDPC code has constant number of ones in each 
column (column weight) and each row (row weight) in 
the parity-check matrix H. If column weight and row-
weight are not constant, then the code is irregular. Code 
rate r is equal to k/n, which means that (n–k) redundant 
bits have been added to the message so as to correct the 
errors.  
 
LDPC code can be represented effectively by a bi-
partite graph called a Tanner graph [9]. A bi-partite 
graph is a graph (nodes or vertices are connected by 
undirected edges) whose nodes may be separated into 
two classes, and where edges may only be connecting 
two nodes not residing in the same class. The two 
classes of nodes in a Tanner graph are bit nodes and 
check nodes. The Tanner graph of a code is drawn 
according to the following rule: Check node j is 
connected to bit node i whenever element hji in H is a 1.  
One may deduce from  this  that there   are  
m = n – k check nodes, one for each check equation, and 
n bit nodes, one for each code bit. Further, the m rows 
of H specify the m c-node connections, and the n 
columns of H specify the n v-node connections. Figure 
1 shows a Tanner graph made for a simple regular parity 
check matrix H. In this graph each bit node is connected 
to two check nodes (bit node degree = 2) and each 
check node is connected to four bit nodes (check node 
degree = 4). 
 
In parity-check matrix bit node degree and check node 
degree are represented by column weight wc and row 
weight wr, respectively. Column weight and row weight 
are the number of non-zero in column and in row, 
respectively.  
 
For irregular LPDC codes, it is usual to specify the v-
node and c-node degree distribution polynomials, 
denoted by λ(x) and ρ(x), respectively.  
 

 
Figure 1. Tanner graph of parity check matrix H. 
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In the polynomial (1.a) λd denotes the fraction of all 
edges connected to degree-d v-nodes and dv denotes the 
maximum v-node degree. Similarly, in the polynomial 
(1.b) ρd denotes the fraction of all edges connected to 
degree-d c-nodes and dc denotes the maximum c-node 
degree. Note for the example of the regular code in 
figure 1, for which wc = dv = 2 and wr = dc = 4, we have 
λ(x) =  x  and  ρ(x) = x3. 
 
A cycle (or loop) of length ν in a Tanner graph is a path 
comprising ν edges which closes back on itself. The 
Tanner graph in the above example possesses a length-4 
cycle as exemplified by the four dashed edges in the 
figure 1. The girth γ of a Tanner graph is the minimum 
cycle length of the graph. The shortest possible cycle in 
a bipartite graph is clearly a length-4 cycle, and such 
cycles manifest themselves in the H matrix as four 1’s 
that lie on the corners of a submatrix of H. We are 
interested in cycles, particularly short cycles, because 
they can degrade the performance of the iterative 
decoding algorithm used for LDPC codes.  
 
Quasi-Cyclic Codes 
A code is quasi-cyclic if, for any cyclic shift of a 
codeword by p places, the resulting word is also a 
codeword [8]. A cyclic code is a quasi-cyclic code with 
p = 1. Binary quasi-cyclic codes can be described by a 
parity-check matrix 
 

H = [H1 H2 … Hp]              (2) 
   

where H1 … Hp are binary (v×v) circulant submatrices. 
Provided that one of them is invertible (say Hp) the 
generator matrix for the code can be constructed in 
systematic form resulting in a quasi-cyclic code of 
length vp and dimension v(p-1). Encoding can be 
achieved with linear complexity using a  v(p-1)-stage 
shift register in much the same way as for cyclic codes 
resulting in a (vp, v(p-1)) quasi-cyclic code [8,10] 
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A circulant submatrix Hi is completely characterized by 
the polynomial a(x) = a0 + a1x + … + av-1xv-1 with 
coefficients from its first row, and a code C with parity-
check matrix of the form (2) is completely characterized 
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by the polynomials a1(x) … ak(x). Polynomial transpose 
is defined as 

    ∑
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For a binary [n,k] code, length n = vp and dimension k = 
v(p-1), the k-bit message [i0 i1  ... ik-1] is described by the 
polynomial i(x) = i0 + i1x + ... + ik-1xk-1 and the 
codeword for this message is c(x) = i(x), xkp(x), where 
p(x) is given by 
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The polynomial ij(x) is the representation of the 
information bits v(j-1) to vj and polynomial 
multiplication (*) is mod xv-1. 
 
To construct a quasi-cyclic code for sum-product 
decoding we shall require that H is very sparse and that 
the Tanner graph of the code is free of 4-cycles. For this 
purpose code construction using difference families is 
proposed. 
 
Difference Families 
A difference family (henceforth, DF) is an arrangement 
of a group of p c-element subsets, such that every non-
zero element of a group occurs λ times among the 
differences of element of subsets [9]. More precisely: 
 
Definition: The p c-element subsets of the group Zv, D1 
... Dp with Di = {di,1 di,2 ... di,γ} form a (v,c,λ)-DF if the 
differences di,x – di,y , (i = 1 ... p;  x,y = 1 ... γ , x ≠ y) give 
each nonzero element of Zv exactly λ times. This can be 
formulated more compact in (6)  
 
   [ ]yxDyxyxD ≠∈−=∆ ,,::                    (6) 
  
where ∆D is the collection of all differences of elements 
of D. For example, the subsets D1 = {0,1,4}, D2 = 
{0,2,7} of Z13 form a (13,3,1)-DF with differences 
 
∆{0,1,4} = [0-1,0-4,1-0,1-4,4-0,4-1] = [12,9,1,10,4,3] 
∆{0,2,7} = [0-2,0-7,2-0,2-7,7-0,7-2] = [11,6,2,8,7,5] 
 
Note that these subsets of 3-elements give the 
differences consisting of nonzero elements within the 
group of 13-elements exactly 1 time.  
 
 In this work we are interested in DF with λ=1 which 
allows the design of codes free of 4-cycles. The 
existence of (v,3,1)-DF  has long been established for 
all v  ≡ 1 mod 6, v a prime power [7]. In addition to that, 
existence results for (v,4,1)- DF and (v,5,1)- DF, v ≡ 1 
mod 12 and v ≡ 1 mod 20, respectively, have been 

proven for all v a prime power. In the following the 
construction we analyse is described using these DF. 
For an irregular quasi-cyclic code we define the column 
weight distribution of a length vp with rates p-1/p code 
as the vector W = [w1, w2, ... , wp], where wj is the 
column weight of the columns in the j-th circulant 
submatrix. We denote by wmax the maximum column 
weight of H 
 
        wmax = max{ w1, w2, ... , wp}  (7) 
  
To construct a length vp rates (p-1)/p irregular quasi-
cyclic code, H = [a1(x), a2(x), ..., ap(x)], with weight 
distribution W = [w1, w2, ... , wp], we take p sets D1 ... Dp 
of a (v,γ,1)-DF with γ ≥ wmax , such that aj(x) is defined, 
using wj of the elements of Dj, as 
 

      jwjjj ddd
j xxxxa ,2,1,)( +++= Λ    (8) 

 
To ensure invertibility at least one aj(x) must be able to 
divide xv-1. 
 
For a regular code all of the elements in each set are 
included in each circulant submatrix, while for an 
irregular code the choice of which elements in the set to 
use is arbitrary, and in fact a single set can be used to 
construct two circulant submatrices provided that 
different elements are chosen for each. The row weight 
ρ of the parity-check matrix is constant, and given by 
(9) 
 

∑
=

=
p

ji
iwρ        (9) 

 
By choosing λ=1 this quasi-cyclic code is free of 4-
cycles. In the regular case, each column of H = [a1(x), 
a2(x), ... , ap(x)] is a translate of one of the sets Dj in the 
DF. The matrix H has no 4-cycles if two columns of H 
have no nonzero entry in the same two rows, which is 
equivalent to requiring that two elements of Zv can 
occur together in at most one of all the translates of the 
sets in the DF. Since two elements occur together in 
exactly λ=1 translate, the 4-cycles can be avoided. 
 
3. Results and Discussion 
 
Using the (101,5,1)-DF from [7], we have the following 
subsets 

D1 = {0,14,42,47,55},  
D2 = {0,52,63,83,95},  
D3 = {0,17,21,51,74} 
D4 = {0,7,26,36,92}, 
D5 = {0,61,76,98,100} 

 
In constructing code, we are interested in LDPC code 
with short length in order of hundred bits and high rates 
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(code rate ≥ 3/4). Therefore, we construct a quasi-cyclic 
irregular (404,303) DF-LDPC code with the column 
vector W = [5,5,3,2] characterized by the polynomials of 
circulant matrices in equation (10). Henceforth, this 
code is regarded as our reference code. 

1)(1
Dxxa =    

2)(2
Dxxa =   

74211)(3
dd xxxa ++=   

9236)(4
dd xxxa +=             (10) 

 
We make use of BPSK modulation in this scheme. 
Notice that all codes are decoded by using sum-product 
decoding with maximal iterations 20 over additive white 
gaussian noise (AWGN) channel. 
 
Firstly, our DF-LDPC code is compared to random 
codes proposed by MacKay-Neal [3] with comparable 
parameters. Figure 2 shows that the DF-LDPC code can 
compete the random code. It performs about 2.7 dB 
away from the Shannon limit at the BER of 10-5. In 
addition to that, as quasi-cyclic code, this code offers 
advantage in encoding, which is conducted using a 
shift-register circuit of size equal to the code dimension. 
Encoding of the quasi-cyclic code requires (n-k)α 
binary operations, where α is one less than the row 
weight of G, while matrix multiplication requires (n-
k)(2k-1) binary operations [10].  
 
Moreover, we can reduce storage requirement 
significantly by just specifying the elements of 
submatrices. 
 
We are also interested in comparing performance of 
irregular DF-LDPC code with regular one and the effect 
of their column weight. We construct regular (404,303) 
DF-LDPC codes with w=3 and w=5 whose polynomials 
are presented in (11.a) and (11.b), respectively. 
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Figure 2. Error correction performance of DF-LPDC code 
 

42141)(1
dd xxxa ++=  

956352)(2
ddd xxxxa ++=    

745121)(3
ddd xxxxa ++=  

92367)(4
ddd xxxxa ++=     (11.a) 

 
1)(1

Dxxa =  
2)(2

Dxxa =  
3)(3

Dxxa =  
4)(4

Dxxa =                  (11.b) 
 

Figure 3 shows that irregular DF-LDPC code is slightly 
superior against regular ones. Meanwhile, the regular 
LDPC code with larger column weight (w=5) 
outperforms that with less column weight (w=3) after 
the BER of 10-5.  
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Figure 3. Performance of irregular and regular DF-LDPC 

code 
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Figure 4. Effect of maximum iteration on code 
performance 
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Figure 5.  Performance of DF-LPDC code with different 

code rates 
 
Furthermore, we will study the effect of maximum 
iteration number on code performance. Figure 4 
demonstrates that large maximum iteration number 
provides larger code gain at less bit error probability. A 
code gain of 0.5 dB is achieved at the BER of 10-5 with 
ten times of reference maximum iteration. However, in 
practice, this performance improvement should be 
traded-off with latency requirement of system.   
 
It is of interest to study the DF-LDPC code with 
different code rates. As mentioned in previous section, 
the DF construction results in DF-LPDC code with code 
length vp and code rate (p-1)/p. It means that prolonging 
the code by adding submatrices into the parity-check 
matrix will make the code rate higher. We construct the 
LDPC codes with code rate ½ and 19/20 with the 
polynomials in (12.a) und (12.b), respectively. 
 
 1)(1

Dxxa =  95521)(2
dd xxxa ++=            (12.a)

  
1)(1

Dxxa =     2)(2
Dxxa =     3)(3

Dxxa =   
3671)(4

dd xxxa ++=  98761)(5
dd xxxa ++=     

5514)(6
dd xxxa +=  8352)(7

dd xxxa +=           (12.b) 
 
In figure 5, we find out that performance of DF-LDPC 
codes with code length in order of hundred bits is better 
than that in thousand bits. With v = 101 we can still 
achieve good parameter at the code rate 0.85 or the code 
length 707. To achieve good performance in longer 
code length, we need larger submatrix dimension or 
accordingly larger parameter v.  
 
4. Conclusions 
 
Constructing quasi-cyclic LPDC code with difference 
families offer a significant advantage in encoding, 

which is main drawback in its application. Thanks to 
quasi-cyclic form, the encoding of this code can be 
implemented with linear shift-registers, which reduces 
the encoding complexity significantly. 
 
The decoding performance of this code demonstrates a 
modest performance gain for reasonably short lengths 
and high rates in practical iteration number. The 
simulation results show that the selection of the 
parameter v plays an important role in code design. 
With smaller parameter v we can achieve good 
performance with shorter code length at high rate. This 
construction seems to be suitable for WLAN application 
with high rate short packet.  
 
Further study is needed to prove the error-correcting 
capability of this code in real WLAN channels. 
Moreover, the characteristics of this code applicable for 
WLAN applications will be explored in the future.  
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