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Human foraging responses 
to climate change 

Here Sorot Entapa rockshelter on Kisar Island 

Hendri A.F. Kaharudin, Mahirta, Shimona Kealy, 
Stuart Hawkins, Clara Boulanger, 

and Sue O’Connor 

AbstrAct
This study explores prehistoric human subsistence adaptations within the 
context of changing marine and terrestrial environments on the tiny Island 
of Kisar, beginning during the Pleistocene-Holocene transition around 15,000 
years ago (ka). We use zooarchaeological data on faunal remains (vertebrates 
and invertebrates) recovered from Here Sorot Entapa rockshelter (HSE) in 
temporal relationship to climate data from Flores to document prehistoric human 
responses to regional sea-level, temperature, and associated habitat changes that 
occurred after the Last Glacial Maximum (LGM). Human settlement intensity 
peaked during the colder drier conditions of the Bølling-Allerød period at 
14.4-13 ka, and the site was abandoned during a period of unstable sea levels 
and coastal habitats between 9.4-5 ka. Holocene climate change coincides with 
increased reefal subsistence, and an increase in crab exploitation over sea urchin 
use. Rodent abundance increases in the early Holocene, possibly in response to 
expanding forests during warmer wetter conditions, with a significant increase 
in the late Holocene as a result of the human introduction of exotic species to 
the island. 
Keywords 
Coastal; Wallacea; zooarchaeology; climate change; Younger Dryas; Pleistocene-
Holocene transition.
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IntroductIon1

Evolutionary theoretical models and ethnographic accounts all indicate that 
hunter-gatherer subsistence strategies are, and were, a series of complex 
interactions between humans and various environmental and cultural factors. 
Human behavioural ecology theory typically predicts that humans adapt 
behaviour to resource availability using technology and strategies to maximize 
reproductive fitness (Pyke 1984; Gremmillion 2002; Lupo 2007; Allen and 
O’Connell 2008; O’Connell and Allen 2012). These foraging decisions can affect 
the availability of edible organisms, inspire changes in hunting methods and 
technology, cause localized landscape and climate modifications, and can also 
result in resource competition and the rise of socio-political entities. 

On the other hand, climate has arguably been the most critical variable in 
influencing human evolution, being the dominant factor in determining the 
biotic composition of an area (Van der Kaars 1995; Hantoro 1997; Wang et al. 
1999; Gathorne-Hardy et al. 2002; Hope et al. 2004; Woodruff 2010; Wicaksono 
et al. 2017). Global climate changes are known to have had significant impacts 
on faunal distributions (Hewitt 2000) and human survival strategies (Gupta 
2004). However, hypotheses that predict the effects of long-term climate change 
on prehistoric human settlement are difficult to test without a combination of 
localized archaeological and climatic data. 

Changes in climatic conditions after the Last Glacial Maximum (LGM, 
~25-21 ka),2 saw a rapid rise in global sea levels and temperatures during 
the Pleistocene-Holocene transition (Lambeck and Chappell 2001). This had 
a dramatic effect on the landscapes and ecologies in Island Southeast Asia 
(ISEA) (Kealy, Louys, and O’Connor 2016, 2017). These events could have 
affected human foraging strategies in response to climate-driven changes in 
the relative abundance of biota (Simanjuntak 2006; Hawkins, O’Connor, and 
Louys 2017). However, this complex relationship between culture and climate 
has yet to be examined on the smallest of the islands. 

Small islands are significant in human history for their depauperate 
terrestrial faunas that forced a variety of subsistence adaptations in early 
human colonizers (O’Connor et al. 2019). Even today, people who live on the 
island have their own distinct lifeways that differ from people on larger islands 

1 This fieldwork was funded by an ARC Laureate Fellowship to O’Connor (FL120100156). 
Permits to undertake the research on Kisar Island, Maluku Barat Daya, Indonesia, were 
granted by RISTEK (Kementerian Riset dan Teknologi, under research visa 315: 1456/FRP/
SM/VII/2015 granted to O’Connor). Funding was awarded to H.A.F. Kaharudin from the 
Departemen Arkeologi, Universitas Gadjah Mada, for travel to access reference collections. We 
also thank Muhammad Husni and his team from Balai Arkeologi Maluku: Marlon Ririmasse, 
Lucas Wattimena, and Wuri Handoko, for their invaluable assistance in the field.
2 LGM was the time at which global ice cover reached its greatest extent during last glacial 
period. The date range varies depending on the location and methods used to obtain the proxy 
data. For instance, Yokoyama et al. (2000) indicate that the ice was at its maximum extent 
between 22 to 19 ka. However, here we use the period of lowest sea level to define the LGM as 
this would have influenced human foraging choices on Kisar (Lambeck and Chappell 2001).
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and mainland. Kisar, as one of the smallest habitable islands in Wallacea, has 
long history of human occupancy. Faunal remains in cave or rockshelter sites 
(as remnants of the diet of previous inhabitants) that are recovered through 
archaeological excavation can be used as a proxy to interpret the various 
subsistence strategies used by people during prehistory. Developments 
in technology or changing environmental conditions influence resource 
accessibility, thereby precipitating changes in subsistence over time.

Here we discuss the relationship between environmental and cultural 
factors on human adaptation to the small Island of Kisar, in the eastern 
Indonesian region of southern Wallacea, during the Pleistocene-Holocene 
transition and through into the Holocene. We use zooarchaeological data 
obtained from the analysis of marine vertebrates (marine fishes, sea turtles), 
terrestrial micro-vertebrates (small rodents, shrews, bats, birds, lizards), and 
invertebrates (crustaceans, molluscs, and sea urchins) remains recovered 
from the Here Sorot Entapa (HSE) rockshelter site (O’Connor et al. 2019) to 
determine changes in general subsistence strategies and settlement intensity. 
We then compare our data and associated modelled dates with local Lesser 
Sunda Islands climate records from nearby Flores Island (Ayliffe et al. 2013) 
to reconstruct prehistoric human subsistence responses to climate change 
between 16 ka and 2 ka. We also discuss the potential impact of rapid sea 
level rise at the end of the LGM on coastal substrates, marine resources, and 
the human populations using them. 

 
the wAllAceAn ArchIpelAgo

The Wallacean islands between the continental landmasses of Sunda (mainland 
Southeast Asia) and Sahul (Australia – New Guinea) are recognized as a 
biogeographic transitional zone, characterized by a mixed faunal assemblage 
originating from both continents (Mayr 1944; Hooijer 1974; Flannery and 
Boeadi 1995). Faunal diversity is constrained by island size and by isolation 
from mainland biota (Wallace 1860), as predicted by the equilibrium theory 
of island biogeography (MacArthur and Wilson 1967). The discovery of dwarf 
stegodons, giant land turtles, giant lizards (Komodo), and giant rats on 
islands in Wallacea (Aplin and Helgen 2010; Locatelli et al. 201; Louys, Price, 
and O’Connor 2016; Louys et al. 2018) reflect this dispersal as well as the 
evolution of endemic faunas as a result of the “Island Rule” (Foster 1964).3 

However, direct evidence that modern humans preyed on these larger bodied 
animals has yet to be ascertained as, with the exception of the still extant 
Komodo, overlap with the earliest human settlement in this insular region 
has not been demonstrated (Louys, Price, and O’Connor 2016; Hawkins, 
O’Connor, and Louys 2017; Sutikna et al. 2018). 

Small, isolated ecosystems (such as islands) are potentially more 
demanding on human subsistence strategies because of the limited access 

3 The “Island Rule”, “Island Effect”, or “Foster’s Rule” is a theory in evolutionary biology 
that explains the evolutionary phenomenon of dwarfism in large animals and gigantism in 
small animals that become isolated on islands.
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to various terrestrial subsistence resources, including fresh water. Access to 
materials such as wood, bamboo, palms, and shells to make watercraft, fish-
hooks, spears, nets, and string (Bednarik 2003; Balme 2013; O’Connor et al. 
2017) are also critical to the survival of hunter-gatherer populations on small 
islands. The abundance of resources on small islands is not, however, solely 
dependent on land surface productivity, as the length and characteristics of 
the coastline can often provide a greater diversity of resource zones such as 
coral reefs, mangrove forests, and estuarine environments (Keegan et al. 2008). 
Consequently, small islands could in fact support greater resource availability 
than their size suggests, and provide a significantly greater source of marine 
resources, proportional to land size, than their larger island neighbours. 

The Wallacean Archipelago (Indonesia and Timor-Leste) provides 
archaeologists with prime research opportunities for investigating early 
human adaptations to small islands because of the archipelago’s continuous 
isolation (Voris 2000) from mainland Sunda and Sahul. The complexity 
and accessibility of foraging in these environments can be determined by 
a comparison between palaeo-landscapes and the proportion and quantity 
of zooarchaeological remains associated with different ecological resource 
patches (such as marine versus terrestrial) (Yuwono 2009; Rick 2011) or 
capture methods (such as netting versus angling), such as the ratio between 
herbivorous/omnivorous and carnivorous reef fish (Samper Carro et al. 
2016). To-date, research on the Wallacean islands has recovered numerous 
archaeological sites that record evidence for early modern human subsistence 
practices at various times. 

The oldest known early modern human deposits in Wallacea are from the 
islands of Flores and Timor (Sutikna et al. 2018; Shipton et al. Forthcoming). 
Laili (Hawkins et al. 2017), Asitau Kuru (previously Jerimalai) (O’Connor 2007; 
O’Connor, Ono, and Clarkson 2011; O’Connor, Robertson, and Aplin 2014; 
Shipton et al. Forthcoming), Lene Hara (O’Connor et al. 2010), Matja Kuru 2 
(Veth, Spriggs, and O’Connor 2005; O’Connor, Robertson, and Aplin 2014), 
and Bui Ceri Uato (Selimiotis 2006) all record pre-LGM occupation in Timor-
Leste, while the site of Liang Bua on Flores records evidence for early modern 
human occupation in layers above those containing remains of the diminutive 
hominin, Homo floresiensis (Sutikna et al. 2018). The sites of Laili, Asitau Kuru, 
and Liang Bua have produced overlapping calibrated radiocarbon age ranges 
of 43.4-44.7 ka, 43.1-46.5 ka, and 44.13-47.66 ka, respectively, for initial modern 
human occupation (Hawkins et al. 2017; Sutikna et al. 2018; Shipton et al. 
Forthcoming). The overlapping 95.4% confidence interval possible range for 
these dates makes the obtaining of any further determinations of the earliest 
occupied site between them currently unavailable. Regardless of the exact 
occupation order between these three sites, their combined results suggest 
that early modern humans had reached the islands of Flores and Timor, and 
central-south Wallacea generally, by at least 44 ka (Hawkins et al. 2017; Sutikna 
et al. 2018; Shipton et al. Forthcoming). 

Other early, pre-LGM sites in Wallacea with records of early modern 
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human occupation include; Golo (Bellwood et al. 1998), Leang Sarru (Tanudirjo 
2001), Leang Timpuseng and neighbouring rock art sites (Aubert et al. 2014), 
and Lua Meko (Mahirta 2003), with Tron Bon Lei (Samper Carro et al. 2016; 
Samper Carro, Louys, and O’Connor 2017; O’Connor et al. 2017) dated to the 
LGM. With the high ratio of coastline to inland environments, that provide 
limited ecosystems for terrestrial fauna, the early modern humans who 
inhabited the Wallacean Archipelago adapted themselves to focus on marine 
resources to meet their protein requirements (Bowdler 1977; O’Connor, Ono, 
and Clarkson 2011; Balme 2013; Samper Carro et al. 2016; Samper Carro, 
Louys, and O’Connor 2017). 

Excavation results at Pia Huddle, Roti (Mahirta et al. 2004), Asitau Kuru, 
Timor-Leste (O’Connor, Ono, and Clarkson 2011; Shipton et al. Forthcoming), 
Lene Hara, Timor-Leste (O’Connor 2007; O’Connor, Ono, and Clarkson 2011), 
and Tron Bon Lei, Alor (Samper Carro et al. 2016; Samper Carro, Louys, and 
O’Connor 2017) all show a high dependence on coastal and marine resources 
such as fish, shells, crabs, and urchins. A high exploitation of easy-access 
ecosystems is a common characteristic of the survival strategies employed by 
coastal communities (Waselkov 1987; Szabó and Amesbury 2011; Boulanger 
et al. 2019). The discovery of a shell fish-hook made from Tectus nilocitus 
dated to 23-16 ka from Asitau Kuru (O’Connor, Ono, and Clarkson 2011), and 
the placement of shell hooks as grave goods in Tron Bon Lei around 12 ka 
(O’Connor et al. 2017), demonstrates the significance of fish and other maritime 
resources to the early occupants of the Lesser Sunda Islands. 

The Lesser Sunda Islands are an insular archipelago of southern Wallacea 
(Eastern Indonesia, Timor-Leste). The depth of the marine channel that 
separates each of these islands is also a factor in the biogeographic dispersal 
of biota from mainland and other island sources (Maryanto and Higashi 2011). 
As the distance from mainland Sunda increases, the terrestrial vertebrate 
diversity on these islands declines exponentially. Therefore, in addition to the 
domination of marine and coastal faunas, Pleistocene subsistence strategies in 
this region are characterized by only a limited consumption of terrestrial fauna 
such as reptiles, birds, and small mammals. Medium- to large-sized mammals 
are absent from the Pleistocene records of modern human occupation in 
the Lesser Sunda Islands, only appearing in the late Holocene as a result of 
human introductions (Mahirta et al. 2004; Heinsohn 2010; O’Connor, Ono, 
and Clarkson 2011; Samper Carro et al. 2016).

Almost all Wallacean sites show a high dependence on marine resources, 
even the more inland sites such as Laili and Matja Kuru 2 still preserve a record 
of marine exploitation including marine shellfish, fish, turtle, crabs, and sea 
urchins (although notably reduced compared to the coastal sites), indicating 
the value of this resource zone even when procurement distances exceeded 
four km. Archaeological records on smaller islands including Roti, Gebe, 
Talaud, and Alor indicate heavy dependence on marine resources in the face of 
their depauperate terrestrial faunas. Hence Kisar, the smallest (approximately 
80 km2) Wallacean island with a known archaeological record (O’Connor 



530 531Wacana Vol. 20 No. 3 (2019) Hendri A.F. Kaharudin et al., Human foraging responses to climate change 

et al. 2019, 2018), is the ideal location for the study of human adaptation to 
insular environments. 

KIsAr IslAnd

Kisar is a small island that is part of the Lesser Sunda Islands chain of Wallacea, 
an insular archipelago that has never been connected to the continental 
landmasses of Sunda or Sahul. It is located north-east of the Island of Timor, 
in the Indonesian province of Maluku Barat Daya (Figure 1). Kisar and other 
islands of the Lesser Sundas, such as Timor, Moa, Leti, Wetar, and Romang, 
formed as a result of the collision between the Australian and Eurasian Plates 
(Kadarusman et al. 2010). Of these islands, Kisar is located on the border 
between the non-volcanic area of the Outer Banda Arc (that consists of the 
islands of Timor, Moa, and Leti) and the volcanic area that lies on the Inner 
Banda Arc (including Wetar, Romang, and Damar) (Kadarusman et al. 2010; 
Major et al. 2013). 

Kisar’s geology consists predominantly of metamorphic rocks surrounded 
by a series of limestone terraces formed as surrounding coral reefs were 
uplifted over time (Figure 1; Major et al. 2013). The island has undergone 
a tectonic uplift of about 0.5 m per 1000 years as the result of its geological 
location (Chappell and Veeh 1978, Major et al. 2013).  The present climate on 
Kisar is classified as dry with rainfall ranging between 900-1200 mm/pa and 
its vegetation is dominated by savanna and plantations. Occasional large trees 
are still found in valley bottoms along river channels, but dense patches of 
forest exceeding 2-5 ha are absent (Trainor and Verbelen 2013). 

Evidence of the high archaeological potential on Kisar can be seen from the 
discovery of numerous caves and rockshelters containing rock art (O’Connor 
et al. 2018) and also from the results of the small excavations conducted at 

Figure 1. Map showing the regional location of Kisar and the Here Sorot Entapa 
(HSE) rockshelter. A) Island Southeast Asia and the location of Kisar. Light grey 
shows the present extent of the islands, dark grey indicates the extent at 15 ka. B) 
Geology of Kisar (based on Kadarusman et al. 2010) and location of HSE rockshelter.
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HSE located at Wosi/Posi Beach, Kiomanumere Hamlet, Wonreli Village 
(O’Connor et al. 2019). The beach is on the southern coast of Kisar directly 
facing towards the northern side of the Island of Timor. 

here sorot entApA (hse) rocKshelter 
HSE consists of a rockshelter in a limestone terrace with a smaller cave 
chamber at the back (Figure 2). The shelter lies at a height of about 24 m 
above present mean sea level and is located approximately 80 m from the 
modern shoreline (O’Connor et al. 2019). Archaeological evidence from HSE 
suggests Kisar was occupied from 15.5 ka calibrated Before Present (cal BP) 
with settlement terminating around 2 ka cal BP (O’Connor et al. 2019). Hence, 
Kisar is the smallest Wallacean island with a Pleistocene record of modern 
human occupation and its chronology spans the post-LGM period that saw 
significant climate and sea level changes during the Pleistocene-Holocene 
transition and into the Holocene. 

 

humAn responses to pAlAeoclImAte In the lesser sundAs

Ayliffe et al. (2013) detailed the closest palaeoclimate record to Kisar at Gua 
Liang Luar on Flores for the period 18 ka – present; coinciding with human 
settlement at HSE. Previous research indicating that the tropics were affected 
by global climatic shifts such as the Younger Dryas4 is supported by the 

4 The Younger Dryas was a period of abrupt climate change and rapid cooling with a return 
to more glacial conditions following the warming of the post-LGM period. The end of Younger 

Figure 2. Photograph of HSE rockshelter showing the two excavated pits; Square A 
in the foreground and Square B indicated by the arrow.
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speleothem records at Liang Luar that record evidence for Heinrich Stadial 
1 - Bølling-Allerød - Younger Dryas climatic events (Ayliffe et al. 2013). Post-
LGM, the Pleistocene-Holocene transition is marked by a series of significant 
long-term global climate events that lasted several millennia. Climate data in 
the Northern Hemisphere splits this final deglaciation period into two sudden 
cooling phases (Heinrich Stadial 1 and the Younger Dryas) separated by one 
warm period (Bølling-Allerød). Conversely, the climate record in the Southern 
Hemisphere does not necessarily adhere closely to these climate patterns. 
Some evidence even indicates the trend was the opposite, commonly known 
as the “bipolar see-saw” (Dubois et al. 2014; Zhang et al. 2016).

Based on faunal changes seen in the archaeological records, in the tropical 
Indonesian archipelago beginning around 30-25 ka and peaking between 25-15 
ka, a colder and dryer climate has been postulated to have occurred during 
the LGM (O’Connor et al. 2005; O’Connor and Aplin 2007). Temperatures 
reached 3-7°C below present (Gathorne-Hardy et al. 2002) and summer 
precipitation was reduced by at least 30% as a result of a weaker summer 
monsoon (Chabangborn, Brandefelt, and Wohlfarth 2014). Indonesia’s climate 
fluctuated between these colder, dryer conditions to wetter and warmer 
climes at approximately 17-16 ka, and again at 15-14 ka (Williams et al. 2009). 
Lower global temperatures during the Late Pleistocene caused sea levels to 
drop on account of increased polar ice. The lowest sea level reached during 
this period in ISEA is estimated to have been about 135 m below current sea 
levels (Lambeck and Chappell 2001).

The Flores record also indicates localized climactic events following the 
LGM that would have influenced the early inhabitants of the Lesser Sunda 
Islands including Kisar. These include increases in temperature, sea levels, 
and hydrology (Ayliffe et al. 2013). Ayliffe et al. (2013) found a negative 
correlation between the stalagmite data from the Liang Luar Cave on Flores 
and the record of Hulu Cave in China. The cold and dry climate of Heinrich 
Stadial 1 (around 17.6 to 14.7 ka) in the Northern Hemisphere, recorded at the 
Hulu Cave, was instead recorded as warm and wet in Flores because of the 
stronger Australian-Indonesian Summer Monsoon (AISM). A warm period 
during the Bølling-Allerød (around 14.6 to 12.9 ka) and a stronger East Asian 
Summer Monsoon (EASM) in China, is instead indicated as a cooler period in 
the Flores record, on account of a weaker AISM in the region. The Younger 
Dryas interval (around 12.9 to 11.5 ka) is marked by a stronger AISM in 
Flores, resulting in warmer conditions, but cooling in China on account of a 
weakening EASM (Ayliffe et al. 2013). 

These long-term fluctuations in climate probably had a significant impact 
on human settlement of Kisar in the form of responses to changes in resource 
availability that would have influenced the success or failure of human 

Dryas also marks the start of the Holocene period. While the phenomenon of the Younger 
Dryas is much more pronounced closer to the poles, particularly in the north, the Flores record 
(Ayliffe et al. 2013) adds evidence supporting the claim that the tropics were not free of its 
impact (see also Maloney 1995; Partin et al. 2015; Kuhnt et al. 2015).
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populations on such a small island. Global climate changes appear to have 
generated a variety of responses by the early inhabitants in neighbouring sites. 
Changes in human settlement during the LGM varies considerably between 
sites, even sites on the same island. Asitau Kuru and Matja Kuru 2 in Timor-
Leste show little evidence for occupation during the LGM (O’Connor 2007; 
Shipton et al. Forthcoming), while at Laili human settlement persisted during 
the LGM but with marked changes in resource use and increased dramatically 
during the terminal Pleistocene to early Holocene (Hawkins et al. 2017). The 
variety of shellfish species recovered from Leang Sarru (Talaud Islands) is also 
noted to have expanded during the LGM (Ono, Soegondho, and Yoneda 2009). 

Additionally, several sites throughout Wallacea, including Tron Bon Lei 
(Samper Carro et al. 2016; Samper Carro, Louys, and O’Connor 2017), Uai Bobo 
(Glover 1969), Daeo 2 (Bellwood et al. 1998), and Lua Manggetek (Mahirta 
2003), were occupied for the first time as the LGM began to subside. Changes 
in faunal subsistence strategies following the Pleistocene-Holocene transition 
have also been found by Samper Carro et al. (2016) and Samper Carro, Louys, 
and O’Connor (2017) at Tron Bon Lei, Alor Island, indicating a shift from 
the exploitation of larger carnivorous to smaller herbivorous (shallow/reef) 
fish taxa, possibly as a consequence of the stabilisation of sea levels and reef 
communities in the Holocene. Based on the calibrated radiocarbon dates, 
occupation on Kisar began shortly before 15.5 ka (O’Connor et al. 2019) as sea 
levels began to rise at the end of LGM. This data indicates enduring subsistence 
and mobility adaptations on the islands of Wallacea during the LGM, and into 
the Pleistocene-Holocene transition, as reflected in the variability in human 
occupation strategies at different locations. 

methods

sIte excAvAtIon

The 2015 excavation of HSE was conducted in two separate 1 x 1 m test pits 
(HSE-A and HSE-B; Figure 2), dug in 5 cm spits to respective depths of 1.3 
m and 1.2 m (O’Connor et al. 2019). At these depths, cultural materials were 
no longer present, and excavation ceased when sterile beach sand and coral 
deposits were encountered. All excavated material was weighed for each spit 
prior to processing, allowing accurate weights for each excavation removal 
(spit) to be recorded. The excavated material was then sieved in two stages, 
first dry followed by wet sieving, both using 1.5 mm mesh to ensure the 
recovery of small bones and artefacts (O’Connor et al. 2019). 

We analysed the faunal materials from HSE-B; the square with the greatest 
concentration of faunal remains. HSE-B is located inside the dripline in the 
centre of the rockshelter floor (Figure 2), an area that tends to have higher rates 
of sedimentation due to human activity (Louys et al. 2017). This is supported 
by the sedimentation rates and stratigraphy recorded at HSE; especially HSE-B; 
in which numerous dense ash and charcoal layers from human activities were 
identified (Figure 3). 
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Stratigraphic 
Unit

Spit Lab No. Material 
Dated

Δ¹³c C14 Age Calibrated Date 
(calBP)

From To

Unit 9 2 ANU 47724 Charcoal -29 2,050 ± 29 1,931 2,114

Unit 8

2 ANU 46323 Charcoal -26.312 2,250 ± 24 2,158 2,340

Hearth 
feature 
between 
2 & 3

ANU 46324 Charcoal -4.3569 2,250 ± 31 2,155 2,344

Unit 7

4 ANU 47725 Charcoal -27 3,858 ± 32 4,157 4,410

6 ANU 47726 Charcoal -29 4,209 ± 37 4,622 4,852

6 ANU 46321 Charcoal -17.623 4,314 ± 26 4,837 4,960

--HIATUS--

Unit 6 7 Wk 43317 Turbo sp. -667.7 8,849 ± 20 9,455 9,538

9 Wk 43318 Turbo sp. -709.1 9,920 ± 20 10,741 11,023

Unit 3 11 ANU 47727 Charcoal -28 10,354 ± 45 12,019 12,400

12 Wk 43319 Turbo sp. -775.5 12,000 ± 26 13,336 13,537

14 Wk 43320 Turbo sp. -775.2 11,991 ± 26 13,330 13,528

16 Wk 43321 Turbo sp. -781.1 12,204 ± 27 13,512 13,791

17 ANU 46325 Charcoal -15.335 11,802 ± 41 13,485 13,750

18 Wk 43322 Turbo sp. -781.5 12,217 ± 27 14,001 14,222

Unit 2 20 Wk 43323 Turbo sp. -806.9 13,211 ± 30 15,117 15,409

22 Wk 43324 Turbo sp. -797.4 12,824 ± 29 14,212 14,796

Table 1. Radiocarbon dates with calibrations for HSE-B, showing spit and stratigraphic 
unit assigned to each sample and the location of the hiatus; as published by 
O’Connor et al. (2019: Table 1). Carbon-13 isotope fractionation is expressed as 
Δ13C‰. The conventional radiocarbon ages are listed under the C14 Age column with 
corresponding error values.

Figure 3. Stratigraphy of HSE-B showing spits (Sp.), units, and phases. Modified 
from Figure 4 of O’Connor et al. (2019).
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Based on dating of coral in the sterile sand and coral unit underlying the 
occupation deposit at HSE (O’Connor et al. 2019), combined with estimated 
uplift rates (Major et al. 2013), it is predicted that the shelter would have been 
dry and available for occupation shortly after 45 ka (O’Connor et al. 2019). 
However, the oldest possible date for human settlement at the shelter, based 
on radiocarbon dated age-depth models, suggests that HSE was not inhabited 
until around 16 ka (O’Connor et al. 2019). Cultural material was recovered from 
spits 1 to 23 of the 25 spits excavated. Cultural remains found in the excavation 
include stone artefacts, charcoal, pottery, ochre, plant remains, fish-hooks, 
and beads, while the upper late Holocene spits included small amounts of 
earthenware pottery (O’Connor et al. 2019). The age-depth model suggests 
HSE experienced relatively continuous occupation from around 16 ka until the 
early Holocene, with a hiatus (possibly indicating site abandonment) between 
9.5 ka (Unit 6) and 5 ka (Unit 7) after which settlement resumed during the late 
Holocene between 5 ka and 1.6 ka (Table 1; O’Connor et al. 2019). The presence 
of glass fragments consistent in the uppermost spits indicates that occasional 
use of the shelter continued into the colonial period (O’Connor et al. 2019). 

phAses of occupAtIon

O’Connor et al. (2019) divided HSE into two phases; an initial occupation/
pre-hiatus phase from about 15.5 ka – 9.5 ka, and a latter/post-hiatus from 
about 4.9 ka. The stratigraphy was divided into nine units with the cultural 
units beginning at Unit 2 (O’Connor et al. 2019: Figure 4).

Looking closer at the zooarchaeological record for HSE-B, the density of 
faunal remains suggests that HSE-B can be further divided into four occupation 
phases (Figures 3 and 4), based on the extent and patterns of faunal deposition:

PHASE 1 Initial occupation (16-14.5 ka); spits 23 to 20
PHASE 2 The peak of occupation/ Late Pleistocene (14.5-12.8 ka); spits 19 

to 11
PHASE 3 Younger Dryas and Early Holocene (12.7-9.5 ka); spits 10 to 7
- Record Hiatus -
PHASE 4 Holocene Phase (5-1.6 ka); spits 6 to 1

Based on the overall weights of zooarchaeological remains, occupation 
intensity at HSE increased steadily after initial occupation until around 14 ka 
(Figure 4). An occupation peak between 14.5-12.8 ka is identified based on 
the high density of faunal remains alongside much more rapid sedimentation 
when compared to other periods, about 40 cm/ka vs just 5-10 cm/ka. The peak 
in occupation intensity in the terminal Pleistocene is followed by a notable 
decline in occupation continuing through to about 10 ka, followed by site 
abandonment. Occupation resumes in the mid-Holocene as represented by 
significant concentrations of faunal remains, charcoal, as well as pottery in 
the upper spits, but the intensity of occupation never again approaches that 
seen in the terminal Pleistocene at HSE (O’Connor et al. 2019: Figure 4). 
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As radiocarbon ages were unavailable for each spit within the HSE-B 
excavation, we performed an age-depth model in OxCal v.4.3 (Ramsey 
2009), based on the available C14 dates (Table 1) to interpolate the gaps in our 
record (Table 2). This depositional model assumes a Poisson (or random) 
accumulation of sediment (Ramsey 2008), calculated from the available age 
data by averaging the model over many values of k (Ramsey and Lee 2013). 
The model interpolation rate was set to a single date per spit, and the unit of 
depth used was total sediment weight in grams (g) as a proxy for spit volume 
(Table 2). We used default priors and an outlier probability of 5% (Ramsey 
2008; Ramsey and Lee 2013). The model was constructed as phAses within 
two sequences corresponding to the nine units and two phases of O’Connor 
et al. (2019), respectively. Radiocarbon dates within the model were calibrated 
using the IntCal13 (for charcoal) and Marine13 (for marine shell) calibration 
curves (Reimer et al. 2013). The mean modelled and interpolated dates were 
then calculated from the model results and applied to the corresponding spit 
data throughout this study.

Figure 4. Climate change at Liang Luar since 18 ka (from Ayliffe et al. 2013) graphed 
(blue) against total foraging intensity at HSE-B (column). Phases 1-4 as defined in 
this paper shaded according to the key. The Younger Dryas (YD), Bølling-Allerød 
(B-A), and Heinrich Stadial 1 (HS1) delimited by the white lines.
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Spit Sediment 
Weight (G)

C14 Age Modelled
Date

Mean
Modelled Date

Convergence

1 64840 - 1999 – 1303 1651 99.8
2 64245 2,050 ± 29 2115 – 1935 2025 99.9
3 63960 2,250 ± 24 2340 – 2159 2249.5 99.9

2,250 ± 31
4 46450 3,858 ± 32 4411 – 4157 4284 99.9
5 39980 - 4867 – 4237 4552 97.6
6 64230 4,209 ± 37 4867 – 4830 4848.5 99.9

4,314 ± 26
7 28885 8,849 ± 20 9540 – 9452 9496 99.9
8 44445 - 11390 – 9454 10,422 93.5
9 29860 9,920 ± 20 11390 – 11246 11,318 99.8
10 49240 - 13470 – 11250 12,360 47.7
11 42150 10,354 ± 45 13494 – 11962 12,728 50.4
12 41465 12,000 ± 26 13499 – 13332 13,415.5 99.7
13 43975 - 13519 – 13345 13,432 99.6
14 41495 11,991 ± 26 13540 – 13370 13,455 99.6
15 37565 - 13690 – 13402 13,546 97.3
16 41390 12,204 ± 27 13720 – 13515 13,617.5 99.6
17 74710 11,802 ± 41 13732 – 13560 13,646 99.6
18 40450 12,217 ± 27 13791 – 13584 13,687.5 99.6
19 50825 - 15327 – 13577 14,452 96.4
20 32095 13,211 ± 30 15368 – 13627 14,497.5 71.1
21 82770 - 15801 – 13657 14,729 83.2
22 68430 12,824 ± 29 16403 – 14142 15,272.5 92.7
23 36080 - 18175 – 14203 16,189 91.7

fAunAl AnAlysIs

The zooarchaeological findings in each spit were classified according to 
their habitat into three distinct ecological zones: 1) marine fauna: bony fishes 
(Actinopterygii), cartilaginous fishes (Chondrichthyes), and turtles (Testudines); 
2) coastal/tidal zone fauna: shells (Molluscs), barnacles (Maxillopoda), crabs 
(Malacostraca), and sea urchins (Echinodermata); and 3) terrestrial fauna: 
snakes (Serpentes), lizards (Lacertilia), birds (Aves), bats (Chiroptera), rodents 
(Rodentia), shrews (Soricidae), and dogs and their relatives (Carnivora). A 

Table 2. Results of the depositional model based on radiocarbon data from HSE-B. 
Recorded sediment weight (g) (excluding large rocks) is shown per spit alongside 
uncalibrated radiocarbon ages with the corresponding modelled and interpolated 
dates. The Aoverall agreement index = 97.68%, that in addition to generally high 
convergence values suggests the model is robust and a good approximation of 
available data.
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total of 16.84 g of vertebrate remains could not be identified to any of these 
groupings. The majority of these (10.26 g) could be identified at least to the 
superclass Tetrapoda and therefore tentatively ascribed to the terrestrial 
fauna zone as the only likely marine tetrapods (turtles) are known for their 
distinctive morphology (Wyneken and Witherington 2001). The other 6.58 g 
of unidentified vertebrates are included in the measures of overall occupation 
intensity but excluded from the zonal analyses because of the uncertainty 
of their classification. Nine compare to human bones identified previously 
(O’Connor et al. 2019) were excluded from this analysis as they are unrelated 
to human subsistence strategies.

The vertebrate faunal remains were classified using the reference collection 
in the Department of Archaeology and Natural History at the Australian 
National University. Fauna, once classified, was weighed and then adjusted 
by weight to account for variability in spit volume, thereby detecting true 
changes between spits (see Appendix Table A1). The adjusted weight is the 
weight of one faunal classification divided by the weight of the sediment 
from the entire spit (excluding large rocks) adjusted to 50 kg for every spit. 
The calculation is as follows: 

Adjusted weight =
5000 g

× Faunal group weight (g)
from spit x Total sediment weight (g) 

from spit x

For example; spit 3 recovered 1.41 g of identified serpent remains. The total 
volume of sediment excavated for spit 3 weighed 63,960 g. 50,000/63,960 = 
0.78174. Hence, the adjusted weight for serpents in spit 3 is: 0.78174 × 1.41 = 
1.10 g (to 2 decimal p).

Sediment weights include soil, artefacts, and fauna, but do not include 
large rocks (Table 2). Thereby, accounting for any variation in faunal weights 
between spits caused by differences in spit volume; either as a result of less 
sediment because of large rock accumulations in the spit or changing spit 
depth because of excavation variability. By adjusting the individual weights 
to a normalised spit average weight of 50 kg, the abundance of the different 
faunal groups can be accurately compared between spits (Table A1). The 50 
kg amount was selected based on the volume of a perfect 100 x 100 x 5 cm 
cube (one 5 spit in the 1 x 1 m square).

Quantification methods such as Number of Identified Specimen (NISP) 
and Minimum Number of Individuals (MNI) are more popular methods 
than weight for analysing archaeological fauna (see Samper Carro et al. 2016; 
Samper Carro, Louys, and O’Connor 2017; Hawkins, O’Connor, and Louys 
2017; Hawkins et al. 2017). However, each of these methods has advantages 
and disadvantages (Grayson 1984; Barrett 1993). For example, each species 
has a different skeletal structure, corresponding butchering patterns, and 
processes of fragmentation (Gilbert and Singer 1982). 

By using NISP, there is a high risk of counting the same individual more 
than once, across multiple spits. Moreover, when we compare two different 
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species with distinct skeletal structures, such as a fish and a mammal, fish 
bones tend to be more numerous because of a greater number of individual 
bones within their skeleton and the ease with which they are fragmented (Stahl 
1996). The MNI method works to counteract this risk, however it can result in 
significant overestimations of rare taxa and an underestimation of others. For 
example, a single MNI count of sea urchins requires the identification of five 
“teeth” (Gutierrez Zugasti 2011), while vertebrates are regularly identified by 
a variety of cranial or postcranial elements whose use in MNI identifications 
can be selected on the basis of specific preservation patterns at the site (see 
Worthy et al. 2015). Certain MNI methodologies used by different researchers 
such as different levels (spits, layers, squares) of aggregation and elements 
identified, can also lead to ambiguity in the separation of individuals, resulting 
in quite different results (Gilbert and Singer 1982). 

We use weight of fauna in grams (g) as a proxy for relative potential of 
meat yields from the different animal groups (Barrett 1993). This aims to 
reduce the quantification issues generated by the NISP and MNI methods 
while to some degree taking into account the variability in size of animals 
deposited. While variability in species morphology and taphonomy still leads 
to disparities within the weight dataset, for a general comparison between 
subsistence strategies over time, across all faunal classifications, the use of 
adjusted weights was deemed the most appropriate for this study.

results

Invertebrates 
A total of 44.9 kg of invertebrate remains were recovered from the HSE-B 
excavation. Grouped under the four classifications of shell (Mollusca), barnacle 
(Maxillopoda), sea urchin (Echinodermata), and crab (Malacostraca), the bulk of 
the invertebrate fauna of HSE-B are considered to have been sourced from the 
Tidal Ecological Zone. The adjusted weight comparison suggests a correlation 
in the exploitation of shells and crabs during each phase of occupation at 
HSE-B (Figure 5). This trend indicates moderately high exploitation of shell 
and crab in the first phase of occupation with a dramatic increase during the 
second phase, followed by a marked decline during the early Holocene. In 
contrast, high rates of sea urchin exploitation are documented for the initial 
occupation phase, followed by a noticeable decline into the second half of the 
following phase (Figure 5). Sea urchin deposition at HSE increases once again 
during the fourth phase, following the hiatus.
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Vertebrates
A total of 1.736 kg of identified marine and terrestrial vertebrate remains 
were recovered from the HSE-B excavation. Our data indicates that marine 
vertebrate subsistence was dominated by bony fishes (Actinopterygii), 
indicating significant human maritime adaptations to this specific ecological 
zone. A total of 1614.1 g of bony fish remains were recovered from HSE-B, 
peaking in the second occupation phase, around 13 ka (Figure 6). 

During the initial occupation of HSE (16-14.5 ka), marine exploitation 
was at its height with fish dominating the assemblage that also contained 
small amounts of turtle and shark (Figure 6). Most of the shark remains were 
identifiable to the family Carcharhinidae (requiem sharks) (O’Connor et al. 
2019), and first appear in the initial phase of occupancy, increasing in the 
second phase (Figure 6). HSE-B preserves evidence for turtle hunting in each 
phase of occupation, with the highest proportion recorded from spit 17 in 
Phase two (Figure 6). 

Figure 5. Tidal zone faunal record from HSE-B. Adjusted weight (g) for each spit 
graphed over time following modelled depositional ages (Table 2). The different 
phases are shaded, and the Flores climate record is drawn in blue.
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Figure 6. Marine zone faunal record from HSE-B. Adjusted weight (g) for each spit 
graphed over time following modelled depositional ages (Table 2). The different 
phases are shaded, and the Flores climate record is drawn in blue. 

Figure 7. Terrestrial zone faunal record from HSE-B. Adjusted weight (g) for each 
spit graphed over time following modelled depositional ages (Table 2). The different 
phases are shaded, and the Flores climate record is drawn in blue.
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Only small quantities of terrestrial micro-vertebrates5 were recovered from 
HSE. In the initial phase of occupation, the terrestrial faunal assemblage is 
dominated by snakes, lizards, and birds. Bones of rats and bats also occur but 
in much smaller amounts (Figure 7). At the end of the Pleistocene, a dramatic 
increase in the deposition of snakes occurs across every spit of Phase 2 (Figure 
7). The diameters of the vertebrae (between 0.5-1 cm) suggest the majority of 
snake remains were from small to medium individuals, with the larger bones 
probably belonging to some type of python. The majority of lizard remains are 
vertebrae and mandible elements and also suggest small-sized individuals. 

During the early Holocene, there appears to have been a decline in 
occupation intensity and a change in the pattern of terrestrial faunal remains 
deposited at the site (Figure 7). Rodent abundance increases significantly 
compared to snakes and other terrestrial fauna. This trend continues until 
the termination of the site record. The deposition of snakes, lizards, and birds 
during the final phase was also high; however the relative weights for these 
three groups are still far less than that for rodents (Figure 7). Shrews are only 
found in the latter half of the last phase (4) in low proportions.

dIscussIon

Human occupation at HSE on Kisar Island began as sea levels were rising at 
the end of the LGM, coinciding with other archaeological evidence throughout 
Wallacea that indicates increased human habitation and activity during this 
period (Bellwood et al. 1998; Mahirta 2003; Samper Carro et al. 2016; Samper 
Carro, Louys, and O’Connor 2017; Hawkins et al. 2017; O’Connor et al. 2019; 
Shipton et al. Forthcoming). It has been suggested that falling sea levels and 
narrowing water gaps between islands during the LGM might have promoted 
human movement between islands (O’Connell, Allen, and Hawkes 2010).  In 
some cases, such as in the Talauds, the larger land areas created by lower sea 
levels could have sustained occupation in areas that were previously marginal 
for human habitation (Tanudirjo 2001; Ono, Soegondho, and Yoneda 2009). 

However, rising sea levels (Lambeck and Chappell 2001) and warmer 
climates during the Heinrich Stadial 1, notably the most prominent and 
longest climate event in the terminal Pleistocene (Ayliffe et al. 2013), provide 
a viable alternative hypothesis to explain why the post-LGM period sees 
an increase in human activity in the region (Chappell 1993; Shipton et al. 
Forthcoming). Increased coastal occupation has been linked with rising seas 
as this change supports more reefs, lagoons, swamps, beaches, and estuaries 
that themselves support a greater abundance and diversity of marine life 
and resources (Chappell 1993, 2000). Additionally, although islands might 

5 Recovery of micro-vertebrate faunas in archaeological contexts often provides a significant 
contribution to the interpretation of human subsistence activities and/or the palaeoecology 
of the region. “Micro-vertebrate” includes most of the diminutive fauna such as rats, shrews, 
snakes, lizards, birds, and bats. However, detailed identifications to the genus and species levels 
requires a sound understanding of taxonomical identification and taphonomical processes 
because of the small size of the bones and their often highly fragmented state (for more detail 
see Stahl 1996). 
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have been reduced in total land area, the creation of multiple small islands 
following a sea level rise would have increased the length of coastline 
available for maritime exploitation; an advantage to humans in view of the 
limited sources of terrestrial protein on the small Wallacean islands (Shipton 
et al. Forthcoming). While in areas such as northern Australia and parts of 
Papua New Guinea and the Bismarck Archipelago, the rarity of pre-LGM 
sites might be attributable to their submergence by rising seas following the 
LGM (Swadling and Hope 1992; Ward et al. 2013; Summerhayes et al. 2017), 
this is less likely to have had an impact on coastal settlements in the Lesser 
Sundas among which offshore coastal bathymetry is steep (Hawkins et al. 
2017; O’Connor et al. 2017) and uplift rates are high (Hantoro et al. 1994; Cox 
2009; Kealy, Louys, and O’Connor 2017).

Our study indicates an interesting correlation between prehistoric 
subsistence-based human occupation intensity at HSE-B on Kisar Island and 
climate change as recorded on nearby Flores (Figure 4). Kisar was occupied 
during Heinrich Stadial 1 that is assumed to have been a warmer and wetter 
period on Flores and the surrounding region (Ayliffe et al. 2013). Yet occupation 
intensity at HSE increased significantly between 14.5 to 12.8 ka, synchronous 
with the Bølling-Allerød climactic period and a dryer, colder climate on Kisar 
(Figure 4). Relatively higher quantities of stone artefacts as well as beads and 
ochre during Phase 2 also support a peak in site occupancy in this period 
(O’Connor et al. 2019). Commencing at around 12.7 ka, the warm and wet 
Younger Dryas corresponds with a sudden fall in occupation intensity at HSE, 
with a major decline in site use registered between 11.3 to 9.5 ka. By 9 ka the site 
appears to have been abandoned, contemporaneous with global warming that 
began to increase dramatically during the early to mid-Holocene. Resumption 
of low intensity human settlement at HSE occurred after 5 ka (Figure 4).

Further comparisons between the variations in subsistence strategies 
identified above and the climate record from Liang Luar indicate that global 
climate fluctuations might have had a role in the changing amplitudes of 
human occupation at HSE. However, this begs the question of how the early 
occupants managed to flourish during the colder and drier Bølling-Allerød 
period, and why there was a sudden drop off in occupation intensity at the 
beginning of the warm and wet Younger Dryas period, possibly leading to site 
abandonment in the Early Holocene. Perhaps in the case of HSE occupants, 
because they lived on a small island with a high dependency on marine and 
tidal zone fauna, populations were more affected by sea level changes rather 
than other climactic variations following the LGM.

By preference the occupants of HSE selected those resources that were 
abundant and easily collected, such as coastal and marine resources and 
possibly a few terrestrial fauna (snakes and bats), with dietary variation 
probably occurring as foraging efficiency changed following a shift in climate 
(Pyke 1984; Burroughs 2005; Lupo 2007; Allen and O’Connell 2008; O’Connell 
and Allen 2012). High exploitation of tidal zone fauna at HSE, especially 
urchins, during Phase 1 and 2 (16-9.5 ka) was probably attributable to the 



544 545Wacana Vol. 20 No. 3 (2019) Hendri A.F. Kaharudin et al., Human foraging responses to climate change 

ease with which they could be exploited. Burroughs (2005) refers to these 
tidal communities as “fast foods” because of their abundance and their ease 
of collection. As suggested by Allen and O’Connell (2008) and O’Connell and 
Allen (2012), these invertebrate tidal communities provided hunter-gatherer 
communities (particularly those on small islands) with high optimal foraging 
opportunities because of a combination of initial high abundance and the low 
harvesting costs that produced high net returns of protein. As noted above, 
this heavy dependence on coastal resources, especially in shellfish (Mollusca), 
barnacles (Maxillopoda) crabs (Malacostraca), and sea urchins (Echinodermata) 
is seen throughout the Wallacean archaeological record at sites such as Golo 
Cave (Bellwood et al. 1998; Szabó,  Brumm, and Bellwood 2007), Tron Bon Lei 
(Samper Carro et al. 2016; Samper Carro, Louys, and O’Connor 2017), Asitau 
Kuru (O’Connor 2007), Lene Hara (O’Connor et al. 2010), and Leang Sarru 
(Tanudirjo 2001, 2007). 

The most intense human occupation at HSE occurs during Phase 2 and 
coincides with a decline in sea urchin exploitation, and significant increases in 
crab remains. The decline in the exploitation of sea urchin could be linked with 
an increase in local crab populations in the wake of sea-level change, resulting 
in crab over-predation of sea urchins and/or resource competition between 
sea urchins and crabs (Parker and Shulman 1986; Siddon and Witman 2004). 
However, other scenarios are also possible. The phenomenal rate of sea level 
rise during the Meltwater Pulse (MWP)6 1A between 14.6 ka and 14.3 ka, might 
have disrupted urchin communities or the algal communities that formed their 
primary food sources, making crab exploitation more viable for the human 
population using HSE. Alternatively, it might simply be that the initial heavy 
predation of sea urchin habitats near the HSE shelter led to the overexploitation 
of this resource. Deciding between these scenarios is not possible at this time 
but might be able to be addressed in the future by finer scaled taxonomic 
identification of the sea urchin and crab assemblages.  

Fish exploitation at HSE is the highest among all other vertebrate fauna. 
Higher concentrations of Actinopterygii (bony fishes) remains coupled to a 
greater abundance of Carcharhinidae (requiem sharks) in Phase 2 compared to 
other occupation phases and indicates the intensiveness of the fishing activities 
by HSE inhabitants during this period. The south coast of Kisar has a steep 
drop off (Major et al. 2013), coupled with the presence of a considerable sea 
channel between Kisar and Timor, presumably makes for rich near-shore 
fishing conditions. Intensive fishing activities at HSE are also supported by 
the presence of shell fish-hooks that have been recovered from most phases 
of occupation, with largest numbers recovered in Phases 2 and 3 (O’Connor 
et al. 2019). Interestingly, while fish exploitation peaks in Phase 2, it remains 
comparatively high during Phase 3, corresponding to this abundance of 

6 A Meltwater Pulse (MWP) is a rapid deglaciation period causing a corresponding rapid rise 
in sea levels. MWP phase 1A (MWP 1A) led to the rises in sea levels of approximately 20 m over 
less than 500 years (Weaver et al. 2003). MWP 1A is contemporaneous with the onset of Bølling-
Allerød period.
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fish-hooks and perhaps indicating continued and increasing reliance on this 
marine resource as other tidal and terrestrial options declined. An abundance 
of sharks, that often operate along the reef edge, during Phase 2 could be 
related to the lower, but rising sea levels of the terminal Pleistocence when 
reef edge habitats were closer, compared to the higher sea levels and more 
extensive reef platforms of the Holocene period (Leavesley 2007).

Analysis of the terrestrial faunal assemblage suggests minor foraging 
in this zone at HSE compared to the marine and tidal ecosystems. This is 
understandable given Kisar’s small size that strongly limits terrestrial faunal 
diversity and abundance (Natus 2005; Maryanto and Higashi 2011). However, 
the avians, herpetofauna, and small mammals could provide scientists 
with important information for reconstructing Kisar’s palaeoenvironment 
and climate (Gleed-Owen 1998). While the species make-up of small island 
ecosystems is often attributed to dispersals from neighbouring islands and 
continents, their long-term survival and adaptations can provide details on 
the island’s palaeoecology (Koch et al. 2009; MacArthur and Wilson 1967). 

We recognize that certain small- to medium-sized terrestrial animals can 
be deposited in cave sediments by non-anthropogenic causes, such as avian 
predation (Hawkins et al. 2018). However, it cannot be ignored that in certain 
places small mammals, amphibians, and reptiles are also consumed with 
regularity by humans (White 1972; Leavesley 2004; Hawkins, O’Connor, and 
Kealy), especially in regions with limited terrestrial resources. In line with the 
zooarchaeological findings of Tron Bon Lei (Samper Carro et al. 2016), bone 
remains at HSE also have variations in colour between brown, black, grey, 
and white. Although there is a possibility that discoloration is attributable to 
natural oxidation, the alternative hypothesis that the majority are the direct 
result of either cooking or incidental burning, is favoured here; suggesting 
an anthropogenic origin for much of the bone.  

During the Pleistocene (Phases 1 and 2), snake and bat remains dominate 
the terrestrial faunal assemblage followed by birds and lizards (Figure 7). 
Snakes and lizards are known for their adaptability that allows them to survive 
in harsh environmental conditions (Shine and Bull 1979). This adaptability 
could have resulted in greater populations of these reptiles during periods 
of climatic disturbance. Rodents are completely absent from the Pleistocene 
record at HSE, with the notable exception of spit 17, coinciding with the peak of 
occupation, and later in very small proportions from spits 13 and 12 (Phase 2; 
Figure 7). The appearance of rodent remains in spit 17 could indicate increased 
diet breadth in relation to increased occupation intensity. Although there has 
not yet been a detailed taxonomic identification of the rodent remains at HSE, 
the gradual increase in rodents in the terminal Pleistocene to early Holocene 
levels likely reflects an increase in forested environments proximal to the 
shelter in the wake of increased temperatures and rainfall of the Younger 
Dryas in the region (Ayliffe et al. 2013).   

The sudden fall in occupation intensity in Phase 3 at HSE (12.7-9.5 ka) 
occurs at relatively the same time as the Younger Dryas and follows a sudden 
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fall in delta Oxygen-18 isotopes (δ18O) recorded on Flores (Ayliffe et al. 2013). 
While a marked decline in weights is recorded for all faunal groups, the 
proportions of fish bones remains high compared to the other faunal groups. 
Instead, non-fish coastal and terrestrial faunal abundances show very low 
levels of deposition. 

The warmer, wetter conditions recorded during the Younger Dryas 
climactic period (Ayliffe et al. 2013) could have impacted on faunal abundance, 
favouring some groups over others (Hewitt 2000), besides changing non-faunal 
elements of the ecosystem (Russell et al. 2014). Alternatively, overexploitation 
of particular resources during the previous, intense occupation period, could 
also have stressed this insular and depauperate ecosystem beyond its ability to 
recover, particularly in the face of climate change. The human community at 
HSE might have therefore been forced to rely on alternative resources, possibly 
encouraging a simultaneous decline in occupation intensity. Alternatively, 
changing food preferences and improvements in animal capture technologies 
such as developments in traps and nets, could have precipitated this shift in 
subsistence focus. While changing patterns in land-use could have reduced 
occupation, and hence deposition, at HSE. 

Interestingly, the Flores climate record shows a sudden spike in δ18O levels 
towards the end of the Younger Dryas, suggesting a short, abrupt climate shift 
towards cooler, dryer weather (Ayliffe et al. 2013). This peak in δ18O is quickly 
followed by a rapid and continuous decline until about 7 ka when the warmer, 
wetter conditions of the Holocene begin to stabilise (Ayliffe et al. 2013). These 
sudden shifts between climactic extremes during Phase 3 of occupation at 
HSE could have forced a declining population, already struggling with less 
favourable conditions, to abandon the site completely. The fall in occupation 
intensity at HSE during this period can also be related to a scarcity of water 
that is more critical than temperature to organism survival (De Monocal 
2001). The dominance of limestone geology on Kisar (Major et al. 2013) makes 
freshwater hard to find even today (personal observation Kaharudin), however 
climactic extremes and drier conditions probably exacerbated the situation.

The inhabitants of HSE could have moved to other locations on Kisar 
or neighbouring islands such as Timor, Wetar, Romang, or Leti in order to 
have access to more reliable water and food resources. The maintenance of 
the relationship between Kisar and Timor can be found in the rock art, oral 
history, language, and place names that are used together (O’Connor and Ono 
2013; O’Connor et al. 2018). Considering their developed seafaring culture 
(O’Connor, Ono, and Clarkson 2011) and indisputable evidence of the maritime 
transportation of obsidian between islands in the Lesser Sunda found by 
Reepmeyer et al. (2016, 2019), early and continuous cultural linkages between 
the two islands have been demonstrated. Such an abandonment scenario 
would account for the hiatus in the record, with reoccupation only occurring 
after climate stabilisation in the Mid- to Late Holocene and supported by the 
later arrival of Neolithic cultures. Despite likely increases in periodicity during 
the late Holocene (Gagan et al. 2004), the more massive extremes in climate 
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change experienced globally during the last thousand years of the Pleistocene 
are largely absent during the Holocene, indicating that sea levels and perhaps 
climate was comparatively more stable during this time (Richerson, Boyd, and 
Bettinger 2001). 

The final occupation phase at HSE (4) records reoccupation at 5 ka as the 
climate stabilised after the Younger Dryas and post-Dryas peak (Ayliffe et al. 
2013). The level of exploitation of coastal fauna is fairly similar to the initial 
occupation phase with high sea urchin exploitation. The increase in sea urchin 
immediately after the hiatus could reflect the re-establishment of this resource 
on the rocky platforms in proximity to the site after a long period when no 
exploitation occurred. With the exception of turtle, all marine resources decline 
in the last phase of occupation at HSE, coinciding with the densest deposits 
of pottery. The fishing intensity declined continuously with skeletal elements 
found only occasionally. The lower relative abundance of Actinopterygii 
remains recovered from Phase 4 is probably the result of less intensive human 
settlement at the site, reflected in a decline in fishing during the late Holocene 
after reoccupation in the mid-Holocene.

In this final occupation phase at HSE, we also see an increase in rodents 
and the arrival of shrews and dogs, indicating a major change in site use 
with the arrival of pottery technology and exotic fauna. While at present we 
do not have complete taxa identifications for the rodents, their increase in 
Phase 4 likely reflects the introduction of exotic species and an increase in 
diversity as well as abundance. Preliminary identifications of this late Holocene 
occupation level (Phase 4) indicates the presence of Rattus exulans and R. rattus 
(O’Connor et al. 2019; personal observation Hawkins), both exotic to the island 
and probably incidental translocations arriving with new migrants in the last 
2.5 ka.  These rats have been shown to thrive in close relationships with humans 
and disturbed/agricultural habitats (Kirch et al. 2015). The distribution of rats 
is also often associated with the movement of people (Mahirta et al. 2004; Aplin 
et al. 2011). This is further supported by the presence of shrew, a mainland 
Southeast Asia species thought to be translocated by people, also in the last 
three spits of Phase 4. Dogs also appear for the first time alongside the shrews, 
probably introduced as a commensal domesticate during the Late Holocene. 
The earliest dog specimen in the region is from nearby Timor-Leste, dated at 
around 3 ka cal BP (Gonzalez et al. 2013). 

conclusIon

Here we investigated how human prehistoric settlements developed on 
small islands during the profound changes in climate during the Pleistocene-
Holocene transition and into the Holocene. We have done so by examining 
the archaeological record from Here Sorot Entapa rockshelter on Kisar Island 
in combination with the palaeo-environmental data from Flores, in the Lesser 
Sunda Islands of Eastern Indonesia. Our findings follow and complement 
the story of initial human migration and subsistence adaptations within this 
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insular region as early modern humans migrated east of Sunda, penetrating 
the water barriers of Wallacea.

 The necessity of having maritime technologies for prehistoric travel and 
resource collection on small islands is clear. Marine and coastal ecosystems 
are profuse in the Wallacean Archipelago, making these resources more 
favourable for exploitation than the more limited and less reliable terrestrial 
options. While there is no significant correlation between specific climatic 
conditions and human settlement intensity at HSE, the fluctuations in global 
climate clearly influenced the selection and development of subsistence 
strategies. Climate change is seen to precipitate strategy change.

HSE is one of many sites at which occupation either began or increased 
following the LGM. Changes in the intensity of occupation and diet could 
be linked to environmental factors that were notably unstable during the 
terminal Pleistocene to mid-Holocene. The peak in occupational intensity at 
HSE (14.5-12.8 ka), coincided with a dryer, cooling Bølling-Allerød climactic 
period and pronounced sea level rise. Conversely, decreasing intensity of 
occupation (11.3 ka) followed by site abandonment (9.5 ka) could have been 
the result of climactic upheavals that probably led to the instability of reef 
habitats during and immediately following the Younger Dryas. Fishing was the 
prime subsistence activity both before site abandonment and again following 
reoccupation, with the exploitation of sharks decreasing as the reef stabilised 
and the edge moved farther from the focal point of fishing activity. 

Changes in the terrestrial faunal composition indicate that island terrestrial 
habitats could also have been in a state of flux during the Younger Dryas. 
Snakes dominated the terrestrial faunal assemblage during the terminal 
Pleistocene to early Holocene, but once settlement was re-established at HSE, 
rodents and shrews dominate. This could have been the result of a combination 
of factors including increased forest habitat in the early Holocene as wetter 
and warmer conditions prevailed. In the final phase of occupation at HSE 
exotic rodents, shrews and domestic species were probably introduced either 
deliberately or accidentally by Neolithic human migrants, as indicated by the 
appearance of pottery at HSE during the late Holocene.

lIst of AbbrevIAtIons

AISM : Australian-Indonesian Summer Monsoon
B-A : Bølling-Allerød
CI : Confidence Interval
EASM : East Asian Summer Monsoon
g : gram
HS1 : Heinrich Stadial 1
HSE : Here Sorot Entapa
ISEA : Island Southeast Asia
ka : kilo annum, or ‘thousand years’ signifies “thousand calendar years ago”
LGM : Last Glacial Maximum
MNI : Minimum Number of Individuals
MWP : Meltwater Pulse
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NISP : Number of Identified Specimens
Sp. : spits
YD : Younger Dryas
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