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Abstract  

 
The static properties of hadrons, such as their radii and other moments of the electric and magnetic distributions, can 
only be extracted using theoretical methods and cannot be directly measured from experiments. As a result, 
discrepancies between the extracted values from different precision measurements can exist. The proton charge radius, 
rp, which is extracted either from electron-proton (e-p) elastic scattering data or from hydrogen atom spectroscopy, 
seems to be no exception. The value rp = 0.84087(39) fm extracted from muonic hydrogen spectroscopy is about 4% 
smaller than that obtained from e-p scattering or standard hydrogen spectroscopy. The resolution of this so-called 
proton radius puzzle has been attempted in many different ways over the past six years. The present article reviews 
these attempts with a focus on the methods of extracting the radius.  

 
 

Abstrak 
 

Ekstraksi Radius Muatan Proton dari Eksperimen. Sifat-sifat statik hadron seperti radius serta momen-momen lain 
dari distribusi listrik dan magnetik hanya dapat diekstrak melalui metode teoretis dan tidak dapat langsung diukur 
melalui eksperimen. Akibatnya, perbedaan antara nilai-nilai yang diekstrak dari pelbagai pengukuran berbeda sering 
terjadi. Radius muatan dari proton, rp, yang diekstrak dari data hamburan elastik elektron proton atau dari spektroskopi 
atom hidrogen merupakan salah satu contoh problem ini. Nilai rp = 0.84087(39) fm yang diekstrak dari spektroskopi 
hidrogen muonik diketahui 4% lebih kecil dibandingkan dengan nilai yang diperoleh dari hamburan elastik elektron 
proton atau pun dari spektroskopi hidrogen baku. Pemecahan masalah yang sering disebut teka-teki radius proton ini 
sudah banyak dicoba dengan menggunakan pelbagai cara selama enam tahun terakhir. Makalah ini mengulas usaha-
usaha tersebut dengan fokus metode ekstraksi radius.  
 
Keywords: electron-proton scattering, proton; radius, Zeemach moment 
 
 
 
Introduction 
 
The structure of the proton plays an important role in 
atomic physics, where experiments have reached a very 
high level of precision. The inclusion of the proton 
structure is critical to the accurate comparison of 
experimentally measured transition energies and very 
precise quantum electrodynamics (QED) calculations. 
Conversely, the unprecedented precision of atomic physics 
experiments makes it possible to probe some of the static 
properties of the proton, such as its radius. Properties 
such as its charge and magnetization density are usually 
obtained as Fourier transforms of the Sachs form factors 
[1-4] that are extracted from electron-proton (e-p) 
scattering cross-section measurements. One can deduce 

the radius and other moments from these densities and 
infer the size of the proton. The radius thus extracted from 
e-p scattering and hydrogen spectroscopy seemed to be 
commensurate within error bars until a recent precision 
measurement of transition energies in muonic hydrogen 
suggested otherwise. Surprisingly, a comparison of the 
theoretical calculation of the Lamb shift in muonic 
hydrogen, including all QED and finite-size corrections 
(FSC), with the very precisely measured value of the shift  
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EEE  meV in muonic hydrogen, 
led to a radius which was 4% smaller than the average 
CODATA (Committee on data for Science and 
Technology) value of 0.8768(69) fm [5,6]. The extracted 
value of rp = 0.84184(67) fm was much more accurate 
than the previous ones. This so-called “proton puzzle” 
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was later reinforced [7,8] with the precise value of rp = 
0.84087(39) fm from muonic hydrogen spectroscopy.  
 
The puzzle gave rise to extensive literature that attempted 
solutions involving different approaches for the evaluation 
of FSC [9], off-shell correction to the photon-proton 
vertex [10,11], the charge density being poorly 
constrained by data [12], and the existence of non-
identical protons [13], as well as difficulties in choosing 
the reference frame in the extraction of the radius [14-
16]. On the experimental side, accurate spectroscopic 
measurements of muonic deuterium and helium 
transition energies as well as additional scattering 
experiments are expected to shed light on the problem. 
For details of these plans, we refer the reader to Refs. 
[17,18]. The present article will focus on the theoretical 
aspects and the possible discrepancies arising from the 
methods used for the extraction of the proton radius. 
 
Proton charge radius and other moments  
 
The size (or extension) of the proton is characterized by 

the moments of its charge density, ρp as 

rdrrr p
mm 3)(ρ∫= .                              (1) 

 
The charge density is conventionally defined as the 
Fourier transform of the electric form factor, )( 2qp

EG , 
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it is easy to see that the radius defined above as 

rdrrr pp
322 )(ρ∫=  can also be expressed in terms of 

the form factor )(G p
E

2q  as 
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There exists another approach in order to extract the 
proton radius from experiments, one involving atomic 
spectroscopy. In this approach, one attempts to calculate 
the theoretical difference between atomic energy levels 
with the inclusion of all possible corrections from QED 
as well as the proton FSC. This difference is then 
compared with the experimentally measured transition 
energies in order to fit the radius that appears in the 
theoretical expression due to the inclusion of FSC. Such 
an approach was used in [7,8], and, apart from the 
second moment of the charge density, the FSC in Ref. 

[7,8] also included the third Zemach moment [19] 
defined by 

∫= )()2(
33

2

3 rrrdr ρ                  (4) 

 

where )(|)(|)( 3
2 zzdr pp ρρρ rz −= ∫ . This inclusion 

introduced a small model dependence in the extraction 
and has been discussed at length by several authors [20-
23]. Some uncertainty depending on the approach for 
including the FSC was also found in Ref. [9]. 
 
Breit frame, Lorentz boost, and relativistic 
corrections  

In order to compare the radius extracted from the two 
methods mentioned in the previous subsection, we must 
ensure that the extractions are done in the same frame of 
reference. As mentioned in Ref. [24], the size and shape 
of an object are not relativistically invariant quantities: 
observers in different frames will infer different 
magnitudes for these quantities. The static relation 

rdrrr pp
322 )(ρ∫=  defines the radius in the rest frame 

of the proton. The extraction of the radius from e-p 
scattering is, however, not done in the proton rest frame. 
The e-p scattering data is used to extract the invariant 
form factor GE(q2), where the four-momentum transfer 
squared in ep elastic scattering is q2 = ω2 − q2. The 
radius is then evaluated using the following relation [25]: 
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This definition looks slightly different from that derived 
in Eq. (3), with the three-momentum transfer being 
replaced by the four-momentum transfer squared in Eq. 
(5). At first sight, Eq. (5) has the appearance of a 
Lorentz invariant quantity (and this appearance has even 
misled some authors to believe so [26]). However, if we 
examine the condition q2 = 0, with q2 = ω2 – q2, it either 
means that ω2 = q 2 ≠ 0 (in which case we have a real 
photon) or ω = | q | = 0. It is impossible to exchange a 
real photon in the t-channel exchange diagram in elastic 
e-p scattering, so we have to drop the first possibility. 
The second choice involving ω = 0 is, however, 
equivalent to choosing the Breit or the so-called brick-
wall frame, in which the sum of the initial and final 
proton momentum is zero. This interpretation is 
consistent with what we find in the Breit equation where 
the same reference frame has to be chosen. The radius 
extracted in this frame should then be boosted to the 
proton rest frame before comparing it with the one 
extracted from atomic spectroscopy [14]. This and other 
relativistic corrections become important [14] with the 
improved precision of experimental data. Finally, we 
would like to comment that the extraction of the proton 
radius from atomic spectroscopy relies on formulas that 
start with the definition of the radius as given in Eq. (1). 
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The form factor )( 2qp
EG  is a Fourier transform of the 

density ρp(r) in the rest frame, and hence this form 
factor is )()( 22 qGG p

E
p
E =q  in the non-relativistic case 

but )()( 22 qGG p
E

p
E ≠q  in the relativistic case. There have 

been several attempts in the literature to incorporate the 
above relations with relativistic corrections [27-31]. The 
fact that the structure of a bound system is independent 
of its motion in the non-relativistic case, whereas it 
changes in the relativistic case depending on how fast it 
moves, was taken into account in [32] for the 
calculation of the deuteron radius as well. The authors 
in [14] found that incorporating the relativistic 
corrections (along with the Lorentz boost) could indeed 
remove the 4% discrepancy between the e-p scattering 
and µ-p Lamb shift determinations of the radius. 
 
Finite-size effects  
 
The corrections to the energy levels at order α

4 due to 
the structure of the proton are generally included using 
first-order perturbation theory with the point-like 
Coulomb potential modified by the inclusion of form 
factors [9]. The determination of the proton radius from 
accurate Lamb shift measurements in Ref. [7,8] relies 
for the FSC on a seminal calculation of Friar [33] based 
on a third-order perturbation expansion of the energy 
that leads to an expression that depends on the proton 
radius rather than the form factors explicitly. Such an 
expression is a result of approximating the atomic wave 
function everywhere by its value at its center and is 
useful in extracting the radius from spectroscopic 
measurements. In Ref. [33], the author finds 
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where ∆V is the perturbation and the wave function 

φ∆+=Ψ 0 , with 0  and φ∆  the unperturbed part 

and the first-order perturbation, respectively. Further, 
approximating the wave function 0|)r(n r=Φ  by its 

value at r = 0, 








 +
α

−Φπα≈∆ ...r
Zm

r|)(|
Z

E
)(

r
n

2

322
FSC 2

0
3

2
 (7) 

 
The second term involves the third Zemach moment 
given by Eq. (4), which can be rewritten in terms of 

2
pr  as 
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The extraction of the radius from the muonic Lamb shift 
[3] was done using the above relation with a dipole form 

for GE(q2) in order to rewrite 
2

3r  in Eq. (7) in terms 

of 2
pr . Replacing all coefficients in Eq. (7) and 

including all QED corrections, the final expressions used 
in the two references in Ref. [3] in order to compare 
with the experimental values of  
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where the last term corresponds to the full two-photon 

exchange (TPE) contribution [34]. Note that the 
2

3r  

term in Friar’s expression of Eq. (7) is an order α
5 

correction and corresponds in principle to a TPE 
diagram as shown in Ref. [35]. In order to confirm that 
the above formula [Eq. (9)], which relies on perturbative 
methods and is used to fit the proton radius, does not 
change significantly due to the use of nonperturbative 
methods, the authors in Ref. [36] calculated the 
transition energies by numerically solving the Dirac 
equation, including the finite-size Coulomb interaction 
and finite-size vacuum polarization. The point-like 
Coulomb potential was replaced by one including the 
proton charge distribution, ρ(r), given by 
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The energy shift was calculated by taking the difference 
between the eigenvalues calculated using the Dirac 
equation with the above potential for several values of 

2
pr . These energy shifts were then interpolated and 

fitted to the function 
2322 /

pp rBrAf += in order to 

determine the coefficients A and B. Their final result, 
namely, 
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as compared to Eq. (9), led to a radius which differed 
from the central value of 0.84184(67) fm but was well 
within the error bars. Thus, no significant discrepancy 
between perturbative and nonperturbative methods was 
found. However, the authors in Ref. [37], on solving the 
Schrödinger equation numerically, found that the 
difference between the perturbative methods and 
nonperturbative numerical calculations of the 2S 



Kelkar, et al. 

Makara J. Sci. September 2016 | Vol. 20 | No. 3 

122 

hyperfine splitting in muonic hydrogen was larger than 
the experimental precision. 
 
A different relativistic approach for the FSC based on 
the Breit equation with form factors was investigated in 
Ref. [9]. The method relies on the fact that all r-
dependent potentials in quantum field theory (QFT) are 
obtained by Fourier transforming an elastic scattering 
amplitude suitably expanded in 1/c2. The Breit equation 
[38-42] follows the very same principle for elastic e−

µ
+, 

e+e− (positronium), e−p (hydrogen), and µ−p (muonic 
hydrogen) amplitudes. The one-photon exchange 
amplitude between the proton and the muon then leads 
to the Coulomb potential plus the fine and hyperfine 
structure (hfs), the Darwin term, and the retarded 
potentials [38,39]. The authors modified the standard 
Breit potential [9,43] for the µ−p system with the 
inclusion of the electromagnetic form factors of the 
proton. The FSC to the Coulomb, Darwin, and fine and 
hyperfine energy levels for any n, l were provided, and 

an alternative expression for )( 2
2

1
2 2/32/1

== −=∆ f
P

f
S EEE  was 

obtained by performing an expansion of the atomic 
wave functions. The main difference in their expression 
as compared to that of Ref. [7,8] arose due to the 
inclusion of the Darwin term with form factors. Since 
the use of a Dirac equation for energy levels would 
imply the inclusion of the Darwin term, the authors 
subtracted the point-like Darwin term from their 
calculations, leaving only the effect of this relativistic 
correction with form factors. They obtained  
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leading to a proton radius of rp = 0.83594(46) fm, which 
was close to that obtained in Ref. [7,8] but hinted at an 
uncertainty introduced due to the use of a different FSC 
approach.  
 
A brief discussion of the FSC in the hyperfine splitting 
is in order here. The FSC to the hyperfine splitting in 
Ref. [43] was evaluated using 
 

∫ Φ=∆ rrr d)(V̂|)(|E C hfs
2

hfs               (13) 

 
where ΦC(r) is the unperturbed hydrogen atom wave 
function. The spin operators are included in the 
definition of )(ĥfs rV  (see Ref. [27]). This correction 

seemed to be different from that used in Ref. [7,8], 
where it was calculated using the standard Zemach 
formula given by 
 

∫ Φ⋅µµ−=∆ rrrσσ d)(f|)(|E m
2

2121hfs 3

2
,            (14) 

where fm(r) is the Fourier transform of GM(q2). 
However, it was shown in Ref. [44] that Eqs. (13) and 
(14) would give the same result, provided we replace 
ΦC by Φ in Eq. (13). Whereas ΦC(r) in Eq. (13) is a 
solution of the point-like 1/r Coulomb potential, Φ (r) is 
the solution of the potential which includes the 
Coulomb potential with form factors and is given in 

Ref. [19] as ∫ −Φα+Φ=Φ rruurr d||)(f)(m)()( CC e1 0 . 

The difference therefore lies in the usage of the 
unperturbed wave function in the energy correction. In 
other words, in Refs. [43,44], the total Hamiltonian is 

taken as FFFF
C HHHH hfs0 ++= , with H0 containing the 1/r 

Coulomb potential, FF
CH , the FSC correction to the 

Coulomb potential, and FFH hfs  the hyperfine interaction 

with form factors, leading to the energy correction in 
first-order perturbation theory given by  

C
FF

CC
FF
CC |H||H|E ΦΦ+ΦΦ=∆ hfshfs . In Ref. [19], one 

finds FFHH
~

H hfs0+= , with 0H
~

, which includes FSC to 

the Coulomb potential taken as the unperturbed 
Hamiltonian. We notice from the above discussion that 
the Breit equation and the Zemach method would lead 
to the same hyperfine correction if the time-independent 
perturbation theory were to be handled in the same way. 
In a calculation that involves FSC to the point-like 
Coulomb potential as well as hyperfine structure taken 
separately (as in Refs. [7,8,43]), it seems reasonable to 
use the prescription with 

C
FF

CC
FF
CC |H||H|E ΦΦ+ΦΦ=∆ hfshfs  in order to avoid 

double counting of the FSC to the Coulomb term. The 
2
pr  and 3

pr  terms in Eqs. (9) and (12), for example, 

appear after the explicit inclusion of the FSC in the (1/r) 
Coulomb potential. 
 
The proton radius extracted from the muonic hydrogen 
Lamb shift is much more accurate than that determined 
from standard (electronic) hydrogen. The procedure of 
extracting the radius from electronic hydrogen is 
slightly different and involves a simultaneous 
determination of the Rydberg constant and the Lamb 
shift. Traditionally, the Lamb shift was actually a 
splitting (and not a shift) between the energy levels 
E(2S1/2) and E(2P1/2), which are degenerate according to 
the naive Dirac equation in the Coulomb field. The 
convention now, however, is to define the Lamb shift as 
any deviation from the prediction of the naive Dirac 
equation that arises from radiative, recoil, nuclear 
structure, relativistic, and binding effects (excluding 
hyperfine contributions) [45], so that njlnjnjl LEE += Dirac . 
The measurement of the Lamb shift can be disentangled 
from the Rydberg constant by using two different 
intervals of hydrogen structure. For example, we can 
use the accurate measurements of f1S−2S = 
2466061413187.34(84) kHz and f2S1/2−8D5/2 = 
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770649561581.1(5.9) kHz, along with the energy 
expressions 
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to determine the radius. The first differences on the 
right-hand side are dependent on the Rydberg constant 

∞R  (through njnj ERE ∞=Dirac ), which can be eliminated 

using the two equations. The left-hand side is replaced 
by accurate measurements, and the Lamb shift is 
determined independent of the Rydberg constant. Once 
the accurate value of the Lamb shift is known, this value 
can be inserted back into the above equations to 
determine the Rydberg constant accurately. The value of 
the Rydberg constant is thus obtained to be [5,6] 

68539(55)10973731.5=∞R  m−1. Knowing ∞R  accurately, 

one can now proceed to determine the radius as follows: 

shift) (Lamb = splittingenergy  Measured EER nj+∞ , 

where E(Lamb shift) includes all QED as well as proton 
structure corrections. With a good knowledge of all 
QED-related corrections (see for example Ref. [46,47]), 
the radius in the proton structure corrections appearing 
in E(Lamb shift) can be fitted to the measured energy 
splitting. 
 
Reanalysis of scattering data 
 
Apart from the various theoretical papers that attempted 
to explain the discrepancy between the proton radius 
from spectroscopy and scattering, there have also been 
some attempts at reanalyzing the e-p scattering data. We 
shall address some of the recent works and the related 
criticisms. In Ref. [48], the cross-sections at the lowest 
q2 were fitted using two single-parameter models for 
form factors, with one being the standard dipole given 

by 4222 1 −+= )b/q()q(G E
p
E , 42222 1 −+=µ )b/q(/)q(G Mp

p
M  

and the other involving a Taylor expansion given as 

zcG E
p
E −=12 , zc/G Ep

p
M −=µ 122 , where z is the conformal 

mapping variable as defined in Ref. [48]. Following the 
philosophy that the charge radius of the proton is a 
small-q2 concept, the authors analyzed the low q2 data 
using simple fits and reached the conclusion that the 
proton radius could vary between 0.84 and 0.89 fm, 
making the spectroscopy and scattering results consistent. 
 
In a similar attempt, instead of focusing on a reanalysis 
of recent data, the authors decided to review the older 
Mainz and Saskatoon data [32]. They found that a 
dipole function with the muonic hydrogen radius of 0.84 
fm (i.e., 2222 GeV6601 −+= ])[./q()q(G p

E
) not only 

describes low q2 )q(G p
E

2  results but also reasonably 

describes )q(G p
E

2  to the highest measured q2. The 

authors in Refs. [49,50] performed a sharp truncation of 
the form factor expansion in momentum space, which 
was strongly criticized for not being in accord with the 
basic facts of form factors and the extraction of radii 
from them in Ref. [51]. 
 
A completely novel point of view was chosen in Ref. 
[13], where the authors noted that the proton radius may 
not be unique but may be a quantity that is randomly 
distributed over a certain range. The standard definition 
of a “radius” of the proton is obviously based on the 
notion of the proton being spherical. Arguing that the 
definition of the radius could become blurred for a 
deformed proton and providing other literature in 
support of the idea of a fluctuating size of the proton, 
the authors performed a fit for a form factor of the so-
called “non-identical” protons. Taking the standard 
dipole form factor as the basis, the authors introduced 
the fluctuation of the proton size by performing an 
average with the following form: 
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with the GE in the integrand having the standard dipole 
form. The authors determined an average Λ1 = 0.8203 
GeV with a variation of 21.5% by using the latest Mainz 
data to perform the fits. They further studied the effects 
of such a radius variation in neutron star and symmetric 
nuclear matter. The electric form factor as defined in 
Eq. (16) can be evaluated analytically, and using Eq. (5) 
leads to a radius given by 
 

22
1

2 12

∆Λ−Λ
=pr ,                             (17) 

 
This, with the substitution of the values from [13], gives 
a proton radius rp = 0.864 fm. Upon applying the 
relativistic correction (involving the Lorentz boost with 
λE = 1) in Ref. [14], the radius reduces to a value of 
0.844 fm, which is quite close to that determined from 
muonic hydrogen spectroscopy [7,8]. In Fig. 1, we 
display the proton electric form factor at low momenta 
within the three different parametrizations discussed 
above. In Ref. [13], the authors investigated the density 
dependence of the proton radius in nuclear matter. The 
right panel in the Figure 1 shows the behavior of the 
proton radius using the parametrization in [13], with and 
without relativistic corrections (as found in Ref. [14]). 
 
Brief overview of the planned experiments  
 
The discussion of the proton radius puzzle has so far 
revolved around the extractions from e-p scattering 
measurements, standard hydrogen (electronic) spectroscopy, 
and muonic hydrogen spectroscopy. The missing component 
in these analyses is the data on muon-proton elastic 
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Figure 1.  Comparison of the Parametrizations from Refs. [7, 31, 32] for Form Factors at Low Q2 = −q2 (Shown 
in the Left Panel). The Right Panel Displays the Density-dependent Proton Radius as Calculated in 
Ref. [7], with and without Relativistic Corrections Included 

 
 
scattering. The MUon proton scattering experiment 
(MUSE) at the Paul Scherrer Institute is a simultaneous 
measurement of the µ+p and e+p elastic scattering. The 
experiment is expected to decide if the µp scattering and 
µ-p Lamb shift experiment lead to the same proton 
radius. Another scattering experiment is the PRad, 
which will measure the e-p scattering cross-sections 
with higher precision and at low q2. In addition to these 
plans, the CREMA (Charge Radius Experiment with 
Muonic Atoms) collaboration has also been studying the 
spectroscopy of other exotic atoms, such as muonic 
deuterium and muonic helium. A detailed account of 
future experiments can be found in Refs. [17,18]. 
 
Conclusions 
 
The finite size of the proton is characterized fully by all 
the moments of its charge distribution. The second 
moment is, however, generally used to define the 
“radius” of the proton. The radius thus defined can be 
extracted either from spectroscopic measurements or 
lepton proton scattering data using theoretical methods. 
Until some time ago, there seemed to be an agreement 
between the radii extracted from spectroscopy (with 
standard electronic hydrogen) and scattering. However, 
high-precision muonic hydrogen spectroscopy revealed 
a 4% deviation from the average value obtained from all 
previous experiments. Since the radius is an “extracted” 
and not directly “measured” quantity, a higher 
experimental precision should also be complemented by 
a higher confidence in the theoretical component. With 
this viewpoint, in this review we have examined the 
theoretical methods used for the extraction of the radius 
as well as the related literature that has offered possible 
solutions of the “proton radius puzzle.” These included 
checks on the validity of the perturbative methods used 
and the approximations therein as well as the relevance 

of relativistic corrections. The latter is of particular 
importance due to the fact that the relation between the 
charge density and the electric form factor is necessarily 
of a non-relativistic nature. This fact also makes it 
important that the comparison of radii extracted from 
different experiments be done in the same frame of 
reference. While the resolution of the puzzle is being 
attempted by reanalyses of old data and planning of new 
experiments, it is equally necessary to pay attention to 
the theoretical inputs involved in the extraction of the 
radius. 
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