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Abstract

The ability of ligninolytic enzymes from Trametes hirsuta D7 to decolorize several synthetic dyes was investigated. A
crude enzyme powder was produced by fermenting oil palm empty fruit bunch fibers for one month. The dye
decolorization by the enzymes occurred at an efficient 0.25 U/mL. The enzymes degraded 100, 200, 300, 400, and 500
ppm Remazol Brilliant Blue R (RBBR) within 7 h by 95.57 ± 0.32%, 93.46 ± 3.09%, 91.84 ± 0.65%, 86.44 ± 0.97%,
and 82.14 ± 0.52%, respectively. The enzyme also decolorized anthraquinone (Acid Blue 129), monoazo (Acid Orange
7), diazo (Reactive Black 5), and trimethyl methane (Methyl Violet) dyes within 7 h by 94.59 ± 7.97%, 13.99 ± 0.30%,
7.61 ± 0.01%, and 7.59 ± 0.18%, respectively. Addition of MnSO4, H2O2, and violuric acid enhanced the dye
decolorization rate by up to 10-fold. This study shows the potential for application of ligninolytic enzymes from T.
hirsuta D7 in the treatment of wastewater effluent of textile industries.
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Introduction

Synthetic dyes are extensively used in the textile, paper,
rubber, cosmetics, pharmaceuticals, and food industries.
However, the presence of dyes in wastewater from these
industries can be particularly problematic. The dyes
have a complex chemical structure; therefore, they are
resistant to oxidation by light and water. The accumula-
tion of undegradable dyes in surface water can therefore
reduce aquatic diversity by blocking the passage of sun-
light, thereby affecting the ecological balance of aquatic
ecosystems. In addition, many synthetic dyes are toxic,
mutagenic, and carcinogenic [1,2].

Dyes can be classified based on their chemical structure
(e.g., azo, anthraquinone [AQN], indigo,
triphenylmethane, etc.), the method of usage (e.g., direct,
reactive, chromic, metal-complexes, disperse, sulfur, vat,
pigments, etc.), and their chromogens (e.g., donor, accep-
tor, cyanine, polyene, etc.) [3]. The major classes of syn-
thetic dyes are azo and AQN dyes, and their complex
structure makes decolorization a challenge. Currently
available physical or chemical treatments, like adsorption,
precipitation, filtration, and chemical transformation, are
expensive, environmentally unfriendly, and inefficient. As
an alternative to these physicochemical methods, biologi-

cal treatment of dyes using ligninolytic enzymes provides
a lower energy cost and an eco-friendly process [4].

Synthetic dyes are efficiently decolorized by white rot
fungi (WRF), which produce one or more extracellular
ligninolytic enzymes. The WRF enzymes have a very low
substrate specificity; therefore, they can degrade a wide
range of highly recalcitrant substances including synthetic
dyes, which are structurally similar to lignin. Lignin-
modifying enzymes (LMEs) include laccase (LAC) (EC
1.10.3.2), lignin peroxidase (LiP) (EC 1.11.1.14), and
manganese peroxidase (MnP) (EC 1.11.1.13). Some WRF
produce all these enzymes, while others produce only one
or two [4, 5]. Several WRF, such as Pleurotus sajor-
saju [6], Polyporus sp. [7], Trametes versicolor [8], and
Ganoderma lucidum [9], were reported capable of de-
colorizing a wide range of dyes. Oktaviani and Yanto
[10] reported that T. hirsuta D7 showed a high dye
decolorization efficiency through its laccase enzyme
activities.

The aim of the present study was to evaluate the ability
of ligninolytic enzymes from T. hirsuta D7 to decolor-
ize various dyes at different concentrations. The effect
of enzyme mediators, such as manganese sulfate
(MnSO4), hydrogen peroxide (H2O2), and violuric acid
(VA), on dye decolorization was also investigated.
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Methods

All experiments were carried out in the Laboratory of
Biomass Conversion Technology and Bioremediation
and the Laboratory of Microbiology, Research Center for
Biomaterials. Oil palm empty fruit bunches (OPEFB)
were used as a substrate for enzyme production
fungus was T. hirsuta D7, a white rot fungus isolated
from a peat swamp forest area in Riau, Indonesia. The
test dye substrates were Remazol Brilliant Blue R
(RBBR), Acid Blue 129 (AB129), Acid Orange 7 (AO7),
Reactive Black 5 (RB5), and Methyl Violet (MV)
purchased from Sigma-Aldrich. The characteristics of
these substrates are shown in Table 1. Malt extract,
tone, glucose, corn steep liquor, malonate buffer (pH 4.5),
MnSO4, 2,6-dimethoxyphenol (DMP), H
acid (VA), and acetate buffer (pH 4.5) were purchased
from Wako Pure Chemical Industries, Ltd. (Japan).

Fungal culture. The T. hirsuta D7 strain was grown on
malt extract agar and incubated at room temperature (
25–30 C) for 7 days. The fungus culture was then i
oculated in a malt extract-glucose-peptone broth co
taining 20 g/L malt extract, 20 g/L glucose, and 1 g/L
peptone. An inoculum was prepared by inoculating 4
plugs ( 8 mm) of the fungal colony into a 300 mL
Erlenmeyer flask containing 100 mL medium broth and
agitated at 150 rpm at room temperature for 7 days. A

Table 1. Characteristics of the Synthetic Dyes used in This Study [

Dye
(C.I.No.)

Molecular structure

Remazol Brilliant Blue R
(6200)

Acid Blue 129
(62058)

Acid Orange 7
(15510)

Reactive Black 5

Methyl Violet (42535)
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All experiments were carried out in the Laboratory of
Biomass Conversion Technology and Bioremediation
and the Laboratory of Microbiology, Research Center for

Oil palm empty fruit bunches (OPEFB)
were used as a substrate for enzyme production. The test

D7, a white rot fungus isolated
from a peat swamp forest area in Riau, Indonesia. The
test dye substrates were Remazol Brilliant Blue R
(RBBR), Acid Blue 129 (AB129), Acid Orange 7 (AO7),

Violet (MV) were
. The characteristics of

substrates are shown in Table 1. Malt extract, pep-
tone, glucose, corn steep liquor, malonate buffer (pH 4.5),

dimethoxyphenol (DMP), H2O2, violuric
tate buffer (pH 4.5) were purchased

from Wako Pure Chemical Industries, Ltd. (Japan).

D7 strain was grown on
malt extract agar and incubated at room temperature (

C) for 7 days. The fungus culture was then in-
peptone broth con-

taining 20 g/L malt extract, 20 g/L glucose, and 1 g/L
peptone. An inoculum was prepared by inoculating 4

8 mm) of the fungal colony into a 300 mL
Erlenmeyer flask containing 100 mL medium broth and

ated at 150 rpm at room temperature for 7 days. Af-

ter incubation, 1% (w/v) corn steep liquor
and the culture was homogenized with a Waring blender
twice for 2 sec. The homogenized mixture was used as
the inoculum for enzyme production.

Substrate preparation and enzyme production
enzyme was produced by solid state fermentation (SSF),
as follows: 10 meshes of 150 g OPEFB, 150 mL di
tilled water, and 150 mL malt extract
broth were combined in a heat
substrate (53% water content) was sterilized at 121 ºC
for 15 min and then cooled at room temperature. A 10%
(w/v) of T. hirsuta D7 inoculum was inoculated into the
sterilized substrate and incubated at room temperature
for 1 month [14].

Enzyme extraction. The crude enzyme was extracted
from the substrate by adding
pH 4.5, at a ratio of 1:3 to the weight of substrate. The
mixture was homogenized using an ACE AM
mogenizer (Nissei, Japan) at 10,000 rpm for 10 min on
ice and then filtered. The filtrate was centrifuged at
10.380 x g and 4 C for 20 min. Ammonium sulfate was
then added to the supernatant to give a 50% saturated
solution. The solution was stirred with a magnetic stirrer
for 1 h and then centrifuged at
min. The pellet was dissolved in
er, pH 4.5 and freeze-dried for 1
enzyme powder.

Table 1. Characteristics of the Synthetic Dyes used in This Study [3,11,12,13

Molecular structure Functional Group
Molecular
weight

Anthraquinone 626.54

Anthraquinone 460.48

Monoazo 350.32

Diazo 991.82

Trimethyl methane 393.5
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corn steep liquor was added
and the culture was homogenized with a Waring blender
twice for 2 sec. The homogenized mixture was used as
the inoculum for enzyme production.

preparation and enzyme production. The
enzyme was produced by solid state fermentation (SSF),
as follows: 10 meshes of 150 g OPEFB, 150 mL dis-

malt extract-glucose-peptone
broth were combined in a heat-resistant plastic bag. The

bstrate (53% water content) was sterilized at 121 ºC
for 15 min and then cooled at room temperature. A 10%

D7 inoculum was inoculated into the
sterilized substrate and incubated at room temperature

The crude enzyme was extracted
from the substrate by adding 50 mM malonate buffer,
pH 4.5, at a ratio of 1:3 to the weight of substrate. The
mixture was homogenized using an ACE AM-11 ho-
mogenizer (Nissei, Japan) at 10,000 rpm for 10 min on

ltered. The filtrate was centrifuged at
C for 20 min. Ammonium sulfate was

then added to the supernatant to give a 50% saturated
solution. The solution was stirred with a magnetic stirrer
for 1 h and then centrifuged at 10.380 x g at 4 C for 20
min. The pellet was dissolved in 50 mM malonate buff-

dried for 1–2 days to yield a crude

3,11,12,13]

λmax (nm)

592.5

629

482.5

598

584
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Enzyme assay. MnP activity was determined using
DMP as a substrate. The reaction mixture consisted of
50 mM malonate buffer (pH 4.5), 20 mM manganese
sulfate, 2 mM H2O2, and 20 mM DMP. The MnP activ
ty was observed at 470 nm with a UV
tometer and calculated from the molar extinction coeff
cient () of 49,600 M-1cm-1. One unit of MnP
as the amount of enzyme needed to oxidize 1 mmol of
Mn (II) to Mn (III) in 1 min. Laccase activity was d
termined by the laccase assay using syringaldazine as
the substrate. The reaction mixture contained
acetate buffer and 0.5 mM syringaldazine and was mo
itored at 525 nm with a UV-Vis spectrophotometer.
Laccase activity was calculated from the oxidation of
syringaldazine to its quinone using a molar absorptivity
() of 6.500 M-1cm-1 [15]. Enzyme activity (U/L) was
calculated according Eq. (1).

Enzyme activity = (Abs / ɛ) × (Vmixture μL : 10
(60 / t) : (Venzyme μL : 10

Influence of enzyme activity on RBBR dye
decolorization. Six different concentrations of enzyme
(0.025, 0.05, 0.10, 0.25, 1.00, and 4.00 U/mL) were
used to decolorize 100 ppm RBBR dye (3 mL).

Influence of RBBR dye concentration on
decolorization. Crude enzyme at optimum activity was
added to 100, 200, 300, 400, and 500 ppm RBBR dye.

Decolorization of various dyes. Crude enzyme at o
timum activity was added to 3 mL of 100 ppm dye:
RBBR, AB129, AO7, RB5, or MV.

Influence of mediators on decolorization of dyes.
Mediators (1.0 mM MnSO4 and 0.1 mM H
added to 3 mL of 100 ppm dye. In a separate
ment, 2 mM VA was added to activate the laccase.

Figure 1. Percentage of RBBR Decolorization at Various Enzyme Concentrations (a) During the 7 h Reaction Time, (b) at
Maximum Decolorization
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DMP as a substrate. The reaction mixture consisted of
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and 20 mM DMP. The MnP activi-

ty was observed at 470 nm with a UV-Vis spectropho-
tometer and calculated from the molar extinction coeffi-

. One unit of MnP is defined
as the amount of enzyme needed to oxidize 1 mmol of

(III) in 1 min. Laccase activity was de-
termined by the laccase assay using syringaldazine as
the substrate. The reaction mixture contained 10 mM

ngaldazine and was mon-
Vis spectrophotometer.

Laccase activity was calculated from the oxidation of
syringaldazine to its quinone using a molar absorptivity

]. Enzyme activity (U/L) was

μL : 106 ) × 106 ×
μL : 103 ) (1)

Influence of enzyme activity on RBBR dye
Six different concentrations of enzyme

, 0.10, 0.25, 1.00, and 4.00 U/mL) were
used to decolorize 100 ppm RBBR dye (3 mL).

Influence of RBBR dye concentration on
Crude enzyme at optimum activity was

added to 100, 200, 300, 400, and 500 ppm RBBR dye.

. Crude enzyme at op-
timum activity was added to 3 mL of 100 ppm dye:

Influence of mediators on decolorization of dyes.
and 0.1 mM H2O2) were

100 ppm dye. In a separate experi-
ment, 2 mM VA was added to activate the laccase.

Decolorization experiment and assay
mixtures were incubated at room temperature for 7 h.
The decolorization process was measured at an interval
of 1 h with UV-Vis spectrophotometer at the λ
each dye. Each decolorization experiment was pe
formed in triplicate and the mean of the decolorization
percentages was reported. The percentage of
decolorization was calculated using Eq. (2).

Decolorization (%) = Ai – A
Ai

where Ai and Af are the initial and final absorbances of
the mixture, respectively.

Results and Discussion

The enzymatic activities of MnP and laccase were 0.038
 0.001 U/mg and 0.314  0.010 U/mg, respectively, in
the crude powder.

Effect of enzyme loading. Enzyme loading is one of
the reaction parameters required to achieve maximum
dye degradation. The decolorization of RBBR dye at
various enzyme concentrations during the 7 h reaction
time is shown in Figure 1a. The dye degradation was
more efficient at 0.25–4.00 U/mL, with maximum
decolorization of 95.57–100% after a 7 h reaction time
(Fig. 1b). In general, increasing the enzyme concentr
tion enhanced the decolorization activity. This result
agrees with the findings of Ang et al. [6], who reported
that the initial decolorization efficiency of RBBR i
creased with the increase of enzyme concentration.
However, an excessively high enzyme concentration
would increase the cost of the treatment process [1
Therefore, an enzyme concentration of 0.25 U/mL was
presumed adequate for use in further decolorization
experiments in this study.

A

B

Percentage of RBBR Decolorization at Various Enzyme Concentrations (a) During the 7 h Reaction Time, (b) at

5 6 7

Enzyme activity 4 U/mL
Enzyme activity 1 U/mL
Enzyme activity 0.25 U/mL
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Decolorization experiment and assay. All reaction
mixtures were incubated at room temperature for 7 h.

process was measured at an interval
Vis spectrophotometer at the λmax of

each dye. Each decolorization experiment was per-
formed in triplicate and the mean of the decolorization
percentages was reported. The percentage of

calculated using Eq. (2).

Af x 100 (2)

are the initial and final absorbances of

The enzymatic activities of MnP and laccase were 0.038
0.010 U/mg, respectively, in

Enzyme loading is one of
the reaction parameters required to achieve maximum

decolorization of RBBR dye at
various enzyme concentrations during the 7 h reaction

1a. The dye degradation was
4.00 U/mL, with maximum

100% after a 7 h reaction time
ral, increasing the enzyme concentra-

tion enhanced the decolorization activity. This result
agrees with the findings of Ang et al. [6], who reported
that the initial decolorization efficiency of RBBR in-
creased with the increase of enzyme concentration.

ver, an excessively high enzyme concentration
would increase the cost of the treatment process [16].
Therefore, an enzyme concentration of 0.25 U/mL was
presumed adequate for use in further decolorization

B

Percentage of RBBR Decolorization at Various Enzyme Concentrations (a) During the 7 h Reaction Time, (b) at
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Effect of dye concentration. The RBBR dye concentra-
tions at 100, 200, 300, 400, and 500 ppm were treated
with a constant enzyme concentration of 0.25 U/mL for
a 7 h reaction time (Figure 2a.). Maximum
decolorization (95.57  0.32%) was found at a lowest
dye concentration (100 ppm). The decolorization activi-
ty by the enzyme decreased with increasing dye concen-
tration (Fig. 2b.). This is possibly related to the maxi-
mum capacity of enzymes at a certain concentration for
bleaching the dyes [17]. Sabarathinam et al. [16] also
reported that the maximum decolorization of 96.90%
was achieved at 25 ppm of RBBR and the
decolorization was reduced to 53.21% at 250 ppm of
RBBR.

Decolorization of various dyes. Synthetic anthraquinone,
azo, and trimethyl methane dyes are common dyes used
in the textile industry. In this study, AB129, AO7, RB5,
and MV were tested in the decolorization process using
the crude ligninolytic enzymes extracted from T. hirsuta
D7. The enzyme was most effective at decolorizing
anthraquinone AB129 (94.59%) in a 7 h reaction period,
followed by monoazo AO7, diazo RB5,

A

B

Figure 2. Percentage of Decolorization at Various RBBR
Dye Concentrations (a) during the 7 h Reaction
Time, (b) at Maximum Decolorization

and trimethyl methane MV (13.99%, 7.61% and 7.59%
decolorization, respectively) (Figure 3). Ratanapongleka
and Phetson [18] noted that the efficiency of
decolorization depended on the dye structure.

The chemical structure of dyes generally consists of a
conjugated system of double bonds and aromatic rings.
The major classes of dyes are composed of anthraquinoid,
indigoid, and azo aromatic structures [3]. AQN is the
basic unit of dye classes, as its quinonoid system acts as
a chromophore. AB129 is an acidic dye or an AQN-type
dye that has groups containing nitrogen and sulfur
(amine and sulfonate, respectively). It has two structural
units, AQN and 1,3,5-trimethylbenzylamine, which
constitute the chromophore core [3]. The azo dye class
is the largest group of dyes, with -N=N- as a chromophore
in an aromatic system [19]. The azo groups are generally
connected to benzene and naphthalene rings, but they
can also be attached to aromatic heterocyclic or enolizable
aliphatic groups [20]. AO7 is mono-azo dye that has
three aromatic rings and one sulfonate group. RB5 is
diazo dye that contains stringent aromatic molecules
and bis-azo bonds and is difficult to degrade due to its
complex structure [21]. MV belongs to a class of in-
tensely colored organic compounds called
triphenylmethane dyes, due to the presence of three aryl
groups, each of which is bonded to a nitrogen atom that
interacts with one or two methyl groups [22].

Dyes with simple structures exhibit high rates of
decolorization. Lavanya et al. [19] and Lade et al. [23]
showed that the color removal rate is faster for monoazo
dyes than for diazo and triazo dyes. Azo compounds
with hydroxyl or amino groups are more easily degrad-
ed than are those with methyl, methoxy, sulfo, or nitro
groups. In this study, decolorization proceeded in the
order of AB129 > AO7 > RB5 > MV. Anthraquinone
dye is more susceptible to laccase enzymatic activities
[24]. This was proven in this study, where AB129 and
RBBR dyes were more susceptible to the crude
ligninolytic enzyme activity, while the triphenyl me-
thane dye (MV) was resistant to the enzyme activity.

Figure 3. Percentage Decolorization of Various Types of
Dyes Effect of Mediators on the Decolorization
Processes
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A mixture of MnSO4 and H2O2 enhanced the efficiency
of dye decolorization (Figure 4). A previous study also
found that industrial dyes, such as RBBR, Congo
trypan blue, methylene blue, MV, methyl green, and
brilliant cresyl blue, were decolorized when the reaction
medium contained an enzyme as well as 1 mM MnSO
and 0.1 mM H2O2. [25]. Asgher et al. [2
MnP requires hydrogen peroxidase as well as Mn
its activity. The addition of manganese (MnSO
concentration of 0.1–1 mM also can enhance the MnP
activity. Mn is a specific mediator in the MnP catalytic
mechanism [27], while hydrogen peroxidase acts as a
co-substrate for MnP. H2O2 is also accelerates the MnP
reaction [28] through a Fenton reaction, where H
generates hydroxyl radicals (-OH) and/or superoxide
radicals (O2

-) to bleach the dyes [29].

In a separate experiment, the addition of 2 mM VA led
to a greater decolorization of the dyes than was
achieved with addition of MnSO4 and H
A previous study showed that the addition of 2 mM and
5 mM VA could enhance the decolorization of the diazo
dye Acid Red (AR97) by 3-fold. VA was reported as

Figure 4. Decolorization of AB129 (A), RB5 (B), AO7 (C), and MV (D) by
of 1 mM Mn2+ and 0.1 mM H2O

A

March

enhanced the efficiency
4). A previous study also

found that industrial dyes, such as RBBR, Congo red,
trypan blue, methylene blue, MV, methyl green, and
brilliant cresyl blue, were decolorized when the reaction
medium contained an enzyme as well as 1 mM MnSO4

]. Asgher et al. [26] reported that
MnP requires hydrogen peroxidase as well as Mn2+ for
its activity. The addition of manganese (MnSO4) at a

1 mM also can enhance the MnP
activity. Mn is a specific mediator in the MnP catalytic

], while hydrogen peroxidase acts as a
is also accelerates the MnP

] through a Fenton reaction, where H2O2

OH) and/or superoxide

arate experiment, the addition of 2 mM VA led
to a greater decolorization of the dyes than was

and H2O2 (Figure 4).
A previous study showed that the addition of 2 mM and
5 mM VA could enhance the decolorization of the diazo

fold. VA was reported as

one of the most effective redox mediators for laccase
oxidation when compared to the natural mediators [
In the present study, the addition of mediators such as
MnSO4, H2O2, and VA enhanced the decolor
of the dyes up to 10-fold when compared to the rate
without the mediator.

In the present study, the dye decolorization was a result
of a combination of MnP and laccase enzyme activity.
The MnP oxidizes Mn (II) to Mn (III), and Mn (III) then
oxidizes many phenolic compounds [1
decolorizes azo dyes by catalyzing the oxidation of ph
nolic compounds and aromatic amines through the r
duction of molecular di-oxygen to water. The enzymes
attack the double bonds or aromatic rings of the
and change the configuration of the dye structure. Di
ruption of the dye structure results in a reduction in the
color intensity. Changes in the absorption spectra of the
dyes (AB 129, AO 7, RB 5, and MV) as a result of the
enzymatic reaction are shown in Fig

Decolorization of AB129 (A), RB5 (B), AO7 (C), and MV (D) by Crude Enzyme D7 only, ( ), with the
O2 ( ) and with the Addition of 2 mM VA ( )
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one of the most effective redox mediators for laccase
oxidation when compared to the natural mediators [30].
In the present study, the addition of mediators such as

, and VA enhanced the decolorization rate
fold when compared to the rate

In the present study, the dye decolorization was a result
of a combination of MnP and laccase enzyme activity.
The MnP oxidizes Mn (II) to Mn (III), and Mn (III) then

xidizes many phenolic compounds [17]. The laccase
decolorizes azo dyes by catalyzing the oxidation of phe-
nolic compounds and aromatic amines through the re-

oxygen to water. The enzymes
attack the double bonds or aromatic rings of the dyes
and change the configuration of the dye structure. Dis-
ruption of the dye structure results in a reduction in the
color intensity. Changes in the absorption spectra of the
dyes (AB 129, AO 7, RB 5, and MV) as a result of the

wn in Figure 5.

D7 only, ( ), with the Addition
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A B

C D

Figure 5. The UV-Vis Spectra of AB129 (A), RB5 (B), AO7 (C), and MV (D) before (–) and after (- - -) Decolorization for 7 h

Conclusion

The ligninolytic enzyme from T hirsuta D7, at 0.25
U/mL, can effectively decolorize 100 ppm of RBBR
dye. The decolorization activity of this enzyme decreas-
es with increasing dye concentration. Dyes with simpler
structure show higher rates of decolorization than do
dyes with a more complex structure. The addition of
mediators, such as MnSO4, H2O2, and VA enhances the
dye decolorization rate.
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