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Abstract 

 

This review of the impact of large-scale pumping on arsenic distribution reveals that groundwater-

fed irrigation and domestic withdrawal impart tremendous stress on the limited groundwater 

resource base and disrupts the dynamic equilibrium of the groundwater system of the Ganges–

Meghna–Brahmaputra (GMB) delta in Southeast Asia. Excessive groundwater extraction through 

pumping affects the groundwater quality in three major ways. First, excessive pumping transports 

atmospheric oxygen and organic-rich surface water to the subsurface. Second, it promotes arsenic 

build up in surface soil irrigated with arsenic-laced groundwater. Finally, it shifts groundwater 

replenishment zones lying at various depths near extraction points, thus, carrying dissolved arsenic 

from shallow Holocene paleo-channel aquifers to deeper paleo-channel aquifers of the Pleistocene 

age. Optimal management for safe and sustainable groundwater exploitation operations in the area 

must aim to ameliorate the deleterious impacts of pumping on groundwater quality through either 

technological or policy intervention.  

 

Keywords: Arsenic; Groundwater; Ganges–Meghna–Brahmaputra (GMB) delta; Irrigation. 

 

1. Introduction 

The 21st century is replete with problems related to human sustainability. However, the global 

water crisis is gradually overriding other problems related to health and sanitation, climate change, 

food security, industrial growth, and/or energy production. The multi-faceted problem of global 

water shortage has left parts of the global population suffering for water and the rest suffering from 

water. Excessive groundwater withdrawal has significantly increased the water stress in over 60% 

of the world, especially in Africa, Latin America, and Asia. In Southeast Asia, the availability of 

water resources is further limited by quality issues. According to the WWAP (2003) and Morris et 

al. (2003), most of the population in developing nations is vulnerable to either anthropogenically or 

geogenic ally polluted water and prone to water-borne diseases. This situation is particularly 

problematic for developing nations due to the dearth of proper institutional and structural 

https://scholarhub.ui.ac.id/jessd/
https://doi.org/10.7454/jessd.v3i2.1052
file:///C:/Users/user/Documents/edit%20mas%20azhar%2007%20des/5751/rhitwikcu@yahoo.co.in


Journal of Environmental Science and Sustainable Development 3(2): 371-401 

 

DOI: https://doi.org/10.7454/jessd.v3i2.1052           372 

 

arrangements for the treatment of contaminated water, which greatly impairs the livelihood of 

economically underprivileged populations. 

The global pattern of the distribution of freshwater resources available for biological 

consumption is extremely limited. Groundwater comprises the largest distributed store of 

freshwater available for human-sustaining ecosystems. In general, water is considered a finite 

natural resource. Approximately50% of the global population uses groundwater for drinking 

(Coughanowr 1994), and over 65% of the groundwater withdrawals from the subsurface is due to 

irrigation (FAO 2005). Approximately25% of the world’s total irrigated land is fed by subsoil 

water, and 75% of them are in Asia (Shah et al., 2007; Shamsudduha et al., 2011). The United 

Nations Food and Agricultural Organization estimated that, by 2025, 1.9 billion people will likely 

face acute water scarcity and two-thirds of the global population will be confronted with water 

stress (Bandyopadhyay 2015). Indiscriminate pumping of groundwater resources in the pursuit of 

food security is believed to be responsible for this issue. The ingress of saline water in coastal 

aquifers, subsidence of land, and loss of ecological fidelity through the drying of surface water 

bodies warrant serious attention and are linked to the deleterious impacts of indiscriminate pumping 

(Budhu & Adiyaman, 2010; Chai et al., 2004; Don et al., 2006; Erban etal.,2014; Essink, 2001; 

Feyen & Gorelick, 2005; Folch et al., 2011; Ghassemi et al.,1995; Ripl, 1992; Wang et al., 2008; 

Werner et al., 2012; Wright and Berrie, 1987;  Zektser et al., 2005). 

However, studies encompassing the impacts of pumping on groundwater quality are scarce. 

Contemporary research reveals that overexploitation of subsoil water from shallow aquifers results 

in not only significant decreases in groundwater volume to levels below sustainable limits but also 

mobilization of toxic geogenic contaminants, such as arsenic and fluoride, from soil to water and 

their eventual spread to biotic systems through the food chain (Acharyya,2000; Bhattacharya et 

al.,1997; Biswas et al., 2012; Chakraborty et al.,2015; Das et al., 1996; Dowling et al., 2002; 

Kamra, Lal, Singh, & Boonstra, 2002; McArthur et al., 2004; Michael & Voss, 2008; Mukherjee et 

al., 2007; Pal et al., 2002; Ravenscroft et al., 2005). At present, the mechanisms through which 

pumping affects water quality amidst complex hydrogeological conditions are incompletely 

understood. The present work intends to pinpoint such mechanisms from the perspective of existing 

scholarly and gray literature, with focus on the arsenic problem of the Ganges–Meghna–

Brahmaputra (GMB) delta in Southeast Asia. 
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1.1. Magnitude of the problem 

The intensive use of groundwater in agriculture has caused serious debates in many parts of the 

world after the introduction of inexpensive drilling technology in the early 20th century, especially 

after the 1950s. The global scale of groundwater abstraction soared from 100–150 km3 in 1950 to 

950–1000 km3in 2000. The agricultural sector of Asia plays a pivotal role in the remarkable 

increase of these numbers. The complex interplay of supply-push factors (e.g., easy availability of 

low-cost pumps and drilling technologies to pastoralists, government subsidies) and demand-pull 

factors(e.g., on-demand irrigation to support wealth-generating agro-practices, immunity from 

climatic externalities) has promoted massive increases in groundwater extraction (FAO 2005).In the 

Indian subcontinent, the use of groundwater grew from approximately 10–20 km3in 1949 to 240–

260 km3in 2000 (Kumar & Shah, 2006). Overexploitation occurs when withdrawal surpasses the 

natural recharge for an extensive area over a long period of time (Alley et al., 2007; Konikow & 

Kenedy, 2005). Tweed et al. (2018) revealed that groundwater depletion is prolific in semi-arid and 

humid regions of the globe.  

This finding implies that the effects of climate-related changes on recharge rates are minimal 

compared with those of non-climatic factors (Bates et al., 2008; Kundzewicz et al., 2007; Wemer & 

Gleeson, 2012).The relative ease of access to subsoil water has led to the overexploitation of global 

groundwater resources (Sikdar et al., 2001; Mukherjee et al., 2007; Pfeiffer & Lin, 

2012).Overexploitation may deplete river basins to the point where native aquatic flora and fauna 

are unable to survive (Loáiciga, 2004; Rains, 2003).Incidents have been reported in rivers, such as 

the Carmel River (Central Coast) and the Colorado River in the Colorado Desert (USA), and major 

regions of South and Central Asia, the Middle East, Northern China (Taihang Mountains), 

Australia, and North America (Tularam & Krishna, 2009). India and Mexico (Alto Rio Lerma 

Irrigation District, Guanajuato, Mexico) (Salazar et al., 2005; Scot & Shah, 2004) are among the 

leading groundwater users in the world and face severe overdraft challenges. Up to 25% of India’s 

agriculture has been affected by the shortage of groundwater resources (Tularam & Krishna, 2009). 

Besides these countries, California in the Southwestern United States, Iran, and many African 

countries, such as Tanzania and Cape Town in South Africa, has also become vulnerable to 

overdraft problems (Konikow, 2005; Schmidt, 2007; Villholth, 2013; Zektser et al., 2005). As the 

groundwater resource is depleted, the quality of the water obtained has also deteriorated.  

The quality of groundwater is governed by the chemical properties of rainwater, mineralogy and 

geochemistry of soils and the sediment matrix, and duration of contact between the water and these 

soil and aquifer materials. Groundwater quality is gradually deteriorating because of the entry of 
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contaminants into the aqueous environment through human or natural activities from point and 

nonpoint sources. Point sources refer to those related to urban development (e.g., underground 

storage tanks [hydrocarbons], landfills, intensive rural industries [nitrates], cattle and sheep dips 

[pesticides], manufacturing spills, mining-related activities [heavy metals, acid, hydrocarbons]), 

while nonpoint sources refer to those normally found in nature (e.g., intense application of 

fertilizers and pesticides for agricultural, automobile emissions in urban areas) (Ball, 2007). The 

problem of water quality deterioration due to excessive groundwater abstraction goes hand in hand 

with the issues of aquifer depletion. 

According to Liu et al. (2003), groundwater extraction allows the transport of dissolved oxygen 

(in recharge water) to the subsurface; the oxygen oxidizes immobile minerals, thereby releasing 

toxicants, such as arsenic, into the groundwater. Raquela et al. (2006) reported that subsurface 

waters pumped from fertilized agricultural lands in Mexico contain inappropriate levels of toxic 

materials. Chirenjea et al. (2007) reported similar incidents from the Kirkwood Cohansey Aquifer 

System in New Jersey (USA). According to Chakroborty et al., (2015), the arsenic in the Bengal 

Basin may originate from deep-seated tectono-magmatism in the Himalayan Orogenic belt, which 

transports the element to the surface. Subsequent sedimentary processes transport arsenic-laced 

sediments to the Bengal Basin where, under suitable biogeochemical triggers, the toxicant is 

released to the groundwater system. Multiple processes (e.g., reductive dissolution of metal oxides 

and hydroxides, redox cycling in surficial soils, competitive ion exchange), individually or 

simultaneously, may be responsible for the subsequent release of lethal metalloids. The processes of 

such release are significantly complicated by redox disequilibrium in Bengal Basin aquifers and 

anthropogenic intervention through pumping. Thus, the source of arsenic in the GMB delta is 

mostly geogenic in nature, and excessive pumping barely aggravates its mobilization processes.  

Singh and Sheriff (2002) reported that approximately 137 million dwellers in over70 countries 

across5 continents are exposed to arsenic contamination in drinking water. This problem is 

especially acute in South Asian countries, such as Bangladesh, Eastern India, Cambodia, and 

Vietnam (Fazal et al., 2001; Postma et al., 2007; Stute et al., 2007; Van Geen et al., 2006). 

Sengupta et al., (2003) described the mass poisoning in Bangladesh aseven deadlier than the 

disasters of Bhopal, in India(1984), and Chernobyl, in the Ukraine(1986).The major alluvial and 

deltaic plains and inland basins of South and East Asia, such as the Bengal Basin of Bangladesh and 

eastern India, the Yellow River plain, and some internal basins of northern China, the lowland Terai 

region of Nepal (Gurung et al., 2005), Mekong Valley of Cambodia, the Red River delta of 

Vietnam, and the Irrawaddy delta of Myanmar, are vulnerable to groundwater arsenic problems. 
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Unfortunately, all these areas are flat-lying fertile plains composed of young sediments and often 

densely populated. The growing incidence of arsenic poisoning in these areas follows the pattern of 

change in the agro-practice of using groundwater from tube wells instead of dug wells, which began 

in 1970–1980.  

 Prior to India’s independence, its economy was challenged by many famines, the most severe of 

which was the Bengal famine in 1943 that killed three million; this figure is equal to the number of 

persons who perished during the Nazi holocaust. In 1947–1960, the government of India adopted a 

“grow more food” campaign and implemented an intensive agriculture development program as an 

ameliorative measure. Subsequently, the government embraced the “Green Revolution” as a 

response to the crisis in food production. The Green Revolution came along with chemical 

agriculture and an increase in the rate of application of nitrogenous fertilizers and pesticides. 

However, while all these practices have helped India achieve new heights of production capacity in 

the agriculture sector; the existing agro-ecosystems have also been adversely affected. 

Soil fertility loss, soil erosion, soil toxicity, diminishing water resources, subsoil water pollution, 

and underground water salinity are some of the negative impacts of the widespread adoption of 

improved agricultural technologies by farmers to ensure the success of the Green Revolution. The 

unabated pumping of groundwater resulted in a significant drop in the groundwater level below the 

sustainable limit, which, in turn, paved the way for the mobilization of toxic geogenic 

contaminants, such as arsenic and fluoride, from soil to water and their eventual spread to biotic 

systems through the food chain. The number of toxicity incidents in India today is spreading at an 

alarming rate. The available data show that, among 593 districts in India, 203 suffer from fluoride 

contamination, 206 from iron contamination, 137 from high salinity, 109 from nitrate 

contamination, and 35 from arsenic poisoning (DDWS 2006). A summary of the available data 

describing the magnitude of the drinking water quality problem in India is presented in Tables 1 and 

2.  

The scale of the groundwater crisis is increasing in major proportions of the country; thus, 

assessing the existing knowledge to identify the longer-term effects of groundwater pumping on 

water quality and describe the mechanism of the relevant interaction process is appropriate. 

However, groundwater abstraction is a physical process that imparts specific effects on 

contaminants depending on their geochemical behavior. In this work, the authors review the current 

understanding of the arsenic contamination of the GMB region of the Indo-Gangetic Basin (IGB) 

by using the existing scholarly and gray literature.  
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Table 1. Estimated Order of Magnitude (Districts and Populations Affected) and Impact of 

Drinking Water Quality Issues in India 

Quality 

Problems 

Number 

of 

Districts 

Estimated 

Population 

Affected/Exposed 

Cause Impact 

Salinity 137 Estimates not 

available 

Geogenic/Man-made 

(coastal saline intrusion due 

to over pumping) 

Kidney stones 

(Cost/family=7500per/day) 

Fluoride 203 65 million Geogenic but aggravated 

also by Overexploitation; 

increased by malnutrition 

Fluorosis 

(Cost/capita>5000/yr) 

Arsenic 35 5 million in West 

Bengal; even more 

but un-estimated in 

Assam, Bihar 

Complex geogenic process 

not yet well understood; but 

suspected to be related to 

excessive water table 

fluctuation 

Arsenicosis (DALY= 5–27 

per 1000 population) 

Iron 206 Estimates not 

available 

Mainly geogenic Cirrhosis, suspected 

diarrhea, cardiac linkages 

Biological Estimates 

not 

available 

Estimates not 

available 

Poor sanitation and hygiene, 

malnutrition 

Diarrhea; DALY>22 

million/yr 

Agro- 

chemicals 

Estimates 

not 

available 

Estimates not 

available 

Related to 

pesticide/fertilizer use in 

agriculture 

Multiple impacts; not 

understood well 

Industrial 

effluents 

Estimates 

not 

available 

Estimates not 

available 

Due to effluents from 

industries 

Multiple impacts; not 

understood well 

Source: Susheela (1999) 

 

2. Methods 

Groundwater is a crucial source of drinking water to millions across the globe. The World Bank 

(1998) reported that, in India, groundwater accounts for 80% of the domestic water needs in rural 

areas and 50% of the water demand in urban areas. Selecting the GMB delta, which is part of the 

IGB, as the region of focus in this review is valid for several reasons. The IGB represents a vital 

terrestrial water system encompassing 250 million hectares of land, approximately 100 million of 
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which is arable, across Bangladesh, India, Pakistan, and southern Nepal; the region is inhabited by a 

population of nearly 750 million and supported by 25% of the global groundwater irrigation 

(Benner & Fendrof, 2010). The IGB forms the largest fluvio-deltaic system in the world (Akter et 

al., 2016; Alam & Sattar, 2000; Coleman, 1981; Gupta, 2007; Mukherjee et al., 2007) in terms of 

area(123.5×103 km2) and annual sediment discharge (>1×109t/yr) (Bandyopadhyay 2007) hoisting 

about 2 of the global population within an area of ~200,000 km2and covers the eastern regions of 

West Bengal and most of Bangladesh. It is situated within the Bengal Basin of South Asia 

(Goodbred & Nicholls, 2004; Khandoker, 1987; Morgan & William, 1959; Sarker et al., 2003) in 

front of the Himalayan foredeep, within the catchment areas of the GBM Rivers between 

Bangladesh and India, and just above the Bay of Bengal. 

 

Table 2. Extent of Drinking Water Vulnerability in India 

Source: Kulkarni et al. (2009) 

 

Description 
Number of 

Districts 

Percentage of 

Total 

Districts 

Major States 

High Level of Groundwater 

(GWD > 70%) Development 

(“Unsafe” Districts) 

178 30 Punjab, Haryana, Rajasthan, UP, 

Gujrat, Tamil Nadu 

GWD < 70% but with quality 

problems - Fluoride 

128 22 Rajasthan, Gujrat, MP, Karnataka 

GWD < 70% but with quality 

problems - Arsenic 

40 7 WB, Karnataka, Maharashtra 

GWD < 70% but with quality 

problems - Nitrate 

62 11 Assam, Gujrat, Maharashtra, 

Rajasthan, Kerala 

GWD < 70% but with quality 

problems - Salinity 

80 14 Assam, Haryana, Kerala, Gujrat, 

Rajasthan, Orissa 

GWD < 70% but with quality 

problems - Iron 

175 30 Assam, Bihar, Chhattisgarh, Kerala, 

Orissa 

Biological contamination No clear data available 

At least one of the three most 

serious quality problems 

(Arsenic/fluoride /salinity) 

169 29 Assam, Gujrat, Haryana, Karnataka, 

Maharashtra, MP, Orissa, Rajasthan, 

UP, WB 
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Figure 1. Regional map of Bengal Basin showing the physiography and geology of the Ganges–Meghna–Brahmaputra 

delta and surrounding area 

Source: Goodbred et al. (2003) 

 

The delta is an extremely fertile and intensely vegetated alluvial land; it is often called the 

“Green Delta” (Islam, 2016). The role of groundwater is extremely vital in this area; it provides 

drinking water for urban and rural communities and is a key resource for food grain production. 

Unfortunately, besides its extensive use of groundwater, the region is also known for arsenic 

contamination within shallow aquifer systems (Anawar et al., 2003; Benner & Fendorf, 2010; 

Chakroborti et al.,2001; McArthur et al., 2004; Mukherjee, 2007; Ravenscroft et al., 2005; 

Sengupta et al.,2003).Subsoil water circulating within these shallow aquifer systems is generally 

abstracted by individual pastoralists for their livelihood (Shah et al., 2007). However, contemporary 

researchers have determined that irrigation using arsenic-laden water has led to yield losses and 

arsenic transfer to the human system via the food chain (Bhattacharyya et al., 1997; Cubadda et al., 

2010; Dittmar et al., 2007; Duxbury et al.,2003; Farooq et al., 2010; Punshon et al.,2017). Arsenic 

pollution is especially evident to the east of the Bhagirathi River and major parts of Bangladesh 

within aquifers composed of Holocene lowland, organic-rich, fine sand to silt and clayey sediments.   

 The agrarian economy of this area depends largely on agriculture, and its development requires 

the expansion of irrigation facilities. In particular, the cultivation of dry-season Boro-rice (Harvey 

et al., 2006; Mukherjee 2008) has accelerated the demand for irrigation. Consequently, millions of 
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wells, including light duty hand-pumped wells to heavy-duty motor driven ones, have been installed 

to cater to increasing water demands. At present, approximately25% (McArthur et al., 2004) to 33% 

(Honerman et al., 2004; Mukherjee, 2006) of these wells have become contaminated with arsenic. 

Recent hydrogeological studies by Rodell et al. (2009), Shamsudduha et al. (2009), and Tiwari et al. 

(2009) have shown reductions in aquifer storage due to unsustainable groundwater abstraction to 

meet both irrigation and urban water demands in these areas. The deleterious impacts of intensive 

groundwater abstraction at the regional scale have been reported by several authors (Alley et al., 

2002; Alley & Leake, 2004; Sophocleous, 2000). Harvey et al. (2006), Klump et al. (2006), 

Neumann et al. (2009), and Stute et al. (2007), indicated that heavy irrigational pumping is 

responsible for the regional-scale perturbation of the shallow groundwater system. However, 

Bredehoeft (2002) recently reported that large-scale pumping may augment groundwater recharges 

by either diverting riverine water or increasing the available aquifer storage throughout the dry 

season, thereby increasing recharge during the subsequent wet (i.e., monsoon) season (MPO 1987). 

Regional scale groundwater flow modeling by Michael and Voss (2009a) in the Bengal Basin 

supports this view. However, in both cases, the factual impact of the large-scale pumping of 

groundwater-on-groundwater quality warrants a careful review (Shamsudduha et al., 2011). 

 

3. Results and Discussion 

Arsenic-bearing minerals originating from the Himalayan orogeny are carried and stored in Bengal 

Basin sediments through riverine erosion by the Ganges, Brahmaputra, and Meghna Rivers (Guillot 

et al., 2007). The arsenic is mobilized into the groundwater system under suitable geochemical 

conditions and brought to the surface during prolific irrigation pumping in the delta. This arsenic is 

then stored in the topsoil of the region, spread over the basin, and recirculated back into the 

groundwater system through irrigation return flow. In general, groundwater is less prone to 

contamination than surface water. Moreover, the impurities present in rainwater, which replenishes 

dynamic groundwater resources, are naturally removed over the course of soil infiltration.  

Irrigated farming and the disposal of industrial effluents on surface water bodies are responsible 

for augmenting groundwater quality issues. Temporal changes in groundwater quality may be 

invoked by the pumping of different quanta of water with varied chemistry from one or multiple 

geologic strata (Keith et al., 1983; Nightingale and Bianchi, 1980; Schmidt, 1977; Whittemore et 

al., 1989; Wilson and Rouse, 1983).It may induce recharge from proximal sources. If such sources 

contain elevated levels of arsenic, then the otherwise safer portions of the aquifer may be 

contaminated. For example, the eastern segment of Chakdah City, in Nadia District, West Bengal, 
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is in the floodplain of the Hooghly River. Here indiscriminate extraction of groundwater through a 

public supply well resulted in the contamination of a shallow aquifer, which subsequently attracted 

a nearby arsenic plume to the subsurface (Charlet et al., 2007). 

Seasonal changes in the flow direction of groundwater impart a vertical shift, and excessive 

groundwater extraction perturbs the balance and promotes a change in the distribution pattern of 

dissolved arsenic through mixing effects (Neidhardt et al., 2013). The hydraulic conductivity in the 

Bengal Basin is generally considered an isotropic, with greater values in the horizontal direction 

than in the vertical one (Michael & Voss, 2009a). The flat topography of the Bengal delta plain 

(BDP)imparts an extremely low flow velocity. Thus, the region is highly vulnerable to 

anthropogenic pumping, which perturbs the natural hydro-chemical conditions and arsenic 

distributions (Michael & Voss, 2009b). Because the BDP sediments conform toa single and 

massive hydraulically interconnected aquifer system, extensive groundwater extraction can further 

impart the drawdown of arsenic-laced shallow groundwater into deeper aquifers if not protected by 

locally ensemble aquitards or buried paleosols (Mc Arthur et al., 2011; Michael & Voss, 2009a; 

Michael & Voss, 2009b).Pumping may also modify the direction of groundwater flow at a local 

scale to interconnect diverse redox zones within an aquifer and trigger arsenic mobilization and 

adsorption into local aquifer sediments. 

Kinniburgh et al. (1994) studied the effect of long-term groundwater abstraction on the 

deterioration of water quality at the Basal and Chalk aquifers of north London; the authors opined 

that the closed-system oxidation of pyrite amid subsurface environments by primarily air-saturated 

groundwater is insufficient to give rise to remarkably elevated concentrations of SO4 in pore water; 

instead, anomalous concentrations of SO4in the pore water indicate that the degree of oxidation is 

controlled by the availability of areal oxygen rather than the input of dissolved oxygen or nitrate 

present within the groundwater or recharge water itself. Abstraction from the Chalk aquifer over 

many decades has resulted in the dewatering of the overlying Basal Sands aquifer and the 

concomitant entry of air into the subsoil, which ultimately leads to the localized oxidation of pyrite, 

where the rate of oxidation is highest near the bore wells, and the accumulation of poor-quality 

porewater in the Basal Sands. A similar mechanism was proposed by advocates of the pyrite 

oxidation hypothesis (Acharyya, 2000; Chowdhury et al., 1999; Das et al., 1996; Kittrick, Fanning, 

& Hossner, 1982; Mallick & Rajagopal, 1996; Mandal et al.,1996) for arsenic release within the 

groundwaters of the Bengal Basin. 
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Figure 2. Mechanism of arsenic releaseinto the GMB delta sediment according to pyrite oxidation hypothesis 

Source: Adopted from Mallick and Rajagopal (1996) 

 

Arsenic is taken up by certain insoluble sulfide minerals that are co-deposited with the Holocene 

anoxic gray aquifer sediments of the BDP. The pumping-induced decrease in the water table 

beneath such deposits exposes them to atmospheric oxygen and lead to the oxidation of pyrite 

grains in the vadose zone into soluble sulfate, thus releasing soluble arsenate (As3+), sulfate (SO2−
4), 

and ferrous iron (Fe2+) to the groundwater. Mukherjee et al. (2011) argued that enhanced 

groundwater recharge due to increased discharge resulting from unabated pumping creates avenues 

for increased inflow and the deeper permeation of dissolved oxygen into the reducing aquifers.  

 Fe AsS+13Fe3++8H2O                       14Fe2++SO2−
4+13H++H3AsO4 (aq)     (1) 

 

This hypothesis, albeit a breakthrough in the history of arsenic research, was rejected by many 

scholars because of the absence of pyrite in the affected aquifer sediments and low concentration of 

sulfur in the affected groundwater. However, the impact of pumping on groundwater quality is quite 

clear.  
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Harvey et al. (2002) and Polya and Charlet (2009)described an inverse relation between arsenic 

and sulfate concentrations in the pore waters of the Holocene aquifers in Bangladesh. The authors 

proposed that large-scale irrigation pumping may aggravate arsenic concentrations by drawing 

surface water enriched in highly reactive organic compounds below ground (Graham et al., 2015). 

This water fuels the microbially mediated reduction of arsenic-bearing iron minerals and the 

simultaneous release of arsenic from the solid phase to the groundwater. According to them, during 

the dry season, irrigational abstraction is done in havoc quantity; the water collected is later 

replaced by monsoonal rains and local surface water. The infiltrating surface water contains high 

concentrations of dissolved carbon because they come from paddy fields and organic-rich pond and 

river sediments and could change the water chemistry in a manner that may trigger arsenic release 

from the sediments. 

Recent research has revealed that irrigation using arsenic-polluted water adds sufficient arsenic 

to soils, which is detrimental for sustainable agricultural production in South and Southeast Asian 

countries (Heikens, 2006; Williams et al., 2006). The concentrations of solid-phase arsenic in soils 

is usually greater (as high as 40 μg/g at the surface in Bangladesh) than that in aquifer sediments 

(Meharg et al., 2003; Polizzotto et al., 2006; Swartz et al., 2012), which may be due, at least in part, 

to the irrigational return flow of groundwater (Meharg & Rahman, 2003). According to Xie et al. 

(2012), extensive leaching from irrigation return flow is probably the dominant process behind the 

spread of arsenic in groundwater. Groundwater undergoes seasonal changes in redox conditions, 

from irrigation to non-irrigation periods, with the reducing environment being prolonged during the 

non-irrigation period. Arsenic is released rampantly through the reduction of iron oxides/hydroxides 

and oxidation of iron sulfides during the irrigation period and retained in the soil even during the 

non-irrigation period (Xie et al., 2015).  

Since the early 1970s, irrigational pumping has been practiced at a large scale in Bangladesh and 

West Bengal (CGWB, 1994; Mukherjee et al., 2007), thus exposing the anoxic groundwater from 

the aquifers to areal oxygen; arsenic was subsequently sequestered into the oxidized ferric iron in 

the agricultural fields (BADC, 1992; Roychowdhury et al., 2005). The arsenic content of the soil 

zone of rice fields in the Bengal Basin have accumulated up to the order of 1 kg/ha/yr. This arsenic 

may be subsequently recirculated into the groundwater, thus contributing to the contamination 

problem (Chakraborti et al., 2001; Mukherjee et al., 2007; Ravenscroft et al., 2005). Ali et al. 

(2003) assessed that, during the irrigation season, approximately 27209 Mm3 of groundwater 

(considering an average discharge of 10l/s and 1200 hours of irrigation each season) is pumped out. 

Such extensive abstraction of arsenic-laden water from shallow aquifers adds large quantities of 
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arsenic (approximately1 kg of arsenic per hectare of irrigated land each year) to the agro-fields 

annually via irrigation water. Another approximately46 metric tons of arsenic is extracted every 

year from the subsoil water through domestic tube wells in Bangladesh. Overall, over900metric 

tons of arsenic is cycled each year through groundwater in Bangladesh. This arsenic is then 

subjected to the soil–water–plant environment, where they may be (i) transformed through 

microbially mediated redox processes, (ii) volatilized into the atmosphere through various 

biological processes, (iii) undergo adsorption–desorption to become retained on soil surface, 

washed through surface runoff, or leached to the groundwater, and (iv) transported into the food 

chain through plant uptake. 

Arsenic accumulation over soil surfaces is most common in the case of rice (paddy) fields, where 

the topsoil is maneuvered to hold water on the surface. Large quantities of water (~1000 mm/crop) 

are used to irrigate rice, where arsenic is mainly present as As (III), under reducing conditions. In 

this form, the arsenic is most readily available to plant roots (Ali et al., 2003; Brammer & 

Ravenscroft 2009). In irrigated agricultural land, evaporation leaves arsenic behind, along with 

other minerals, on the topsoil, where it is retained for a while on account of its affinity for iron, 

manganese, aluminum, and other minerals in soil under toxic conditions. Even flood or rainwater is 

unable to wash this deposit away, resulting the accumulation of arsenic in surface soils to levels as 

high as 83 mg/kg in topsoil (Alam & Sattar, 2000; Huq, Ahmed, Suktana, & Naidu, 2001; Ullah, 

1998). Most of this accumulation in irrigated agricultural fields is found within the top 150–200 

mm of soil. In Bangladesh, arsenic concentrations appear to be 10 mg/kg over non-irrigated 

floodplain soils (Abedin et al. 2002) and are like or lower in the topsoil than in the subsoil (Saha & 

Ali, 2006).Topsoil arsenic levels in irrigated areas may reach>10 mg/kg (Duxbury & Zavala, 2005). 

Huq et al. (2001) reported arsenic levels of >20 mg/kg, with a maximum of 81 mg/kg, in the same 

layer. The safe limit of arsenic for paddy field soils generally lies in the range of 25–50 mg/kg 

(Duxbury & Panaullah, 2007; Saha & Ali, 2006). However, actual soil loading rates may vary with 

the amount of irrigation water applied, arsenic concentrations in the water, and losses due to 

evaporation, crop removal, and leaching. 

After contaminant loading in the topsoil, the arsenic is further translocated to the biosphere from 

the pedosphere through plant/crop uptake. The degree of arsenic uptake by plants varies among 

plant species and is governed by soil characteristics, such asfertility, and the concentration and 

chemical forms of arsenic in soil (Punshon et al.,2017). Arsenic is present as As (V) in solid-phase 

oxidized soils. Therefore, in such soils, arsenic in the groundwater used for irrigation is quickly 

adsorbed, retained by iron hydroxides, and rendered unavailable for plant uptake (Brammer & 
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Ravenscroft, 2009). In anaerobic soils, arsenic occurs as As (III) and is readily dissolved in the soil 

porewater, where it is easily available for plant uptake through roots (Xu et al., 2008). 

Van Geen et al. (2006) held that irrigating rice fields/crops with arsenic-laced groundwater could 

be lethal and specified two significant consequences of arsenic build up on topsoil, namely, reduced 

crop yields and arsenic exposure through ingestion of contaminated soil (Abedin et al., 2002b; 

Duxbury et al., 2003). According to the authors, the alarmist view of arsenic spread from rice may 

patronize the exploitation of deeper aquifers, which are presently low in arsenic, and, in turn, 

entrain arsenic-laden water from shallow aquifers into deeper ones, leading to their contamination 

(Zheng et al.,2005).  

Sikdar et al. (2018) attempted to assess the possibility of arsenic transport from the shallow 

paleo-channel (SPC) Holocene aquifer to the deep aquifer of the Late Pleistocene through deep 

pumping. According to the authors, prolific irrigation, and domestic abstraction over a sustained 

period of time from deep aquifers (depth > 70 m bgl) may draw arsenic-contaminated water from 

the SPC aquifer and into the deep paleo-channel (DPC) Holocene aquifer but not any further. Thus, 

arsenic in the Late Pleistocene groundwater beneath the DPC originates from some local sources 

and not from the overlying arsenic contaminated SPC aquifer. 

Radloff et al. (2011) suggested that groundwater with elevated arsenic concentrations may be 

commonly found within the top 100m of aquifer systems in South and Southeast Asia. However, in 

the case of West Bengal and Bangladesh, groundwater at depths greater than 150m is considered 

arsenic safe. Recent surveys of deep (>150 m) hand-pumped wells have shown that 

approximately14%–18% of the wells in Bangladesh and 25% of those in the four most 

contaminated districts of West Bengal contain arsenic at concentrations well beyond the limit of 

toxicity. Groundwater flow simulations have suggested that deep waters are at risk of contamination 

due to replenishment with high-arsenic groundwater from above, even when deep aquifer pumping 

is restricted to domestic use.  

Megacities impart enormous benefits to the global economy; however, large heavily populated 

urban areas may strain water resources (Howard & Gelo, 2002). Urban and industrial development 

imposes a major threat to water resources through increased demands. Development not only 

releases contaminants to the subsurface but has also exploits deep aquifers to meet domestic and 

industrial needs. Heavy pumping of the groundwater under urban hotspots may alter the 

hydrological system. A study carried out by Sikdar and Chakrabory (2008) indicated that 

groundwater abstraction may potentially alter the natural flow pattern of an area;future high 
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groundwater abstraction may drive arsenious water horizontally within the aquifer toward 

freshwater zones along with downward infiltration.  

Sahu et al. (2013) carried out a study on the East Calcutta Wetlands and revealed that heavy 

pumping of groundwater has altered the hydrological system of flat deltaic regions because of their 

low topographic gradient. The study also indicated that, under the current pumping scenario of 

Kolkata City, additional recharge areas may be created in the North 24-Parganas, South 24-

Parganas, and Howrah districts as recharge areas migrate toward pumping centers. Unfortunately, 

these newly formed recharge zones are already being heavily contaminated with arsenic; some 

experts estimate that the polluted water may reach the depth of the city aquifer within 40 years. 

 

4. Conclusion 

The unabated development of large-scale irrigated agriculture in Southeast Asia has created heavy 

demands on its limited groundwater supplies, especially over the last few decades. The central 

theme of the current conflict involves the depletion of groundwater without a compensatory 

recharge to the aquifers. However, for dwellers of the GMB delta, the problem of quality 

degradation of the precious groundwater resource is even more acute than the plummeting water 

table. Declines in well yield caused by depleted resource base may exacerbate the gap between the 

competitive and optimal modes of water use. While advanced water-efficient technologies may be 

adopted to ameliorate this issue, water quality degradation is an irreversible outcome of aquifer 

trade-offs. 

The effects of intensive groundwater extraction on water quality have rarely been subject to 

direct reviews through experimentation and/or simulation studies but area central theme in many 

scholarly debates and gray literature. Recent findings based on regional-scale hydrological 

modeling have shown that abstraction may foster groundwater recharge during the monsoon season, 

which casts some doubt on the alarmist assertion. Thus, can groundwater abstraction activities be 

encouraged without limitation or prejudice in the name of food and other allied economic security? 

The answer is a profound no because pumping exerts deleterious effects on water quality. Future 

water management policies should, therefore, embrace the dynamic nature of groundwater and 

consider not only the spatiotemporal responses of water levels in the abstraction scenario but also 

water quality issues to promote the sustainable use of groundwater resources in the GMB delta. 
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