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Abstract

An analytical method to determine polycyclic aromatic hydrocarbons (PAHs) is required to obtain high-quality analytical
results. The purpose of this study is to achieve good separation of a few PAHs by using environmentally friendly liquid
chromatography. Accordingly, a liquid chromatograph incorporating a fluorescence detector, UV detector, and a capillary
column is employed herein to simultaneously minimize the use of chemicals and obtain analytical results better than
those obtained using a conventional column. Observation parameter include single analysis of each PAH, method valida-
tion, the new stationary phase, the effect of mobile phase concentration, and Quencher effect. The PAHs tested include
naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene. The test results show that when using an acetonitrile
concentration of 100%, the retention times of different PAHs do not differ significantly. Furthermore, upon decreasing the
acetonitrile concentration, the retention time increases, and better separation was achieved. The value ranges of precision,
LOD, LOQ, and linearity are 3.43—12.42%, 4.7-15.1 mg/L, 15.6-50.5 mg/L, and 0.87-0.99, respectively. The new Sil-S-
ImC30 stationary phase showed good results in terms of separation of PAHs. Likewise, the use of 60, 70, 80, and 90%
acetonitrile as the mobile phase in combination with 0.03 M acrylamide as the quencher affected retention time but not
separation.

Abstrak

Penentuan Polisiklik Aromatik Hidrokarbon (PAHs) Menggunakan Kromatografi Cair yang Ramah Lingkungan.
Sebuah metode analisis polisiklik aromatik hidrokarbon (PAH) sangat diperlukan untuk memperoleh hasil analisis yang
berkualitas tinggi. Tujuan dari studi ini adalah untuk memperoleh pemisahan beberapa PAH menggunakan kromatografi
ramah lingkungan. Pada studi ini digunakan kromatografi cair yang dilengkapi dengan detektor fluoresen, detektor UV
dan kolom kapiler untuk meminimalisasi penggunaan bahan kimia dan memperoleh hasil analisis yang lebih baik
dibandingkan dengan kolom konvensional. Parameter pengamatan terdiri dari analisis tunggal masing-masing PAH,
validasi metode, fase diam yang baru, pengaruh fase gerak, pengaruh panjang gelombang dan quencher. Beberapa PAH
yang diuji antara lain naphthalen, phenanthrene, anthracene, fluoranthene dan pyrene. Hasil uji menunjukkan
menggunakan astonitril 100 % waktu retensi dari tiap PAH tidak berbeda nyata. Lebih jauh, dengan menurunkan
konsentrasi asetonitril maka waktu retensi dan pemisahan lebih bagus. Nilai presisi, LOD, LOQ dan linearitas berkisar
antara 3.43-12.42%, 4.7-15.1 mg/L, 15.6-50.5 mg/L, and 0.87-0.99. Fase diam baru Sil-S-ImC30 menunjukkan hasil
pemisahan PAH yang bagus. Penggunaan 60, 70, 80, 90% asetonitril yang dikombinasikan dengan 0,03 M acrylamide
sebagai quencher berpengaruh terhadap waktu retensi tetapi tidak berpengaruh terhadap pemisahan.

Keywords: PAHs, chromatography, analysis, capillary column, separation

Introduction benzo[a]anthracene (BaA), benzo[a]pyrene (BaP),

benzo[k]fluoranthene (BkF), fluoranthene (FLT), naph-
There are approximately 10,000 polycyclic aromatic thalene (NAPH), and phenanthrene (PHEN). PAHs are
hydrocarbon (PAHs) compounds, and the most well- colorless, white or pale yellow-green solid organic
known of those are acenaphthene (ACE), compounds that contain at least two fused six-sided
acenaphthylene (ACY), anthracene (ANTH), benzene rings that include only carbon and hydrogen.
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Many PAHs are insoluble in water, but a few of them
vaporize easily. Although about 10,000 PAHs exist in
the environment, the US Environmental Protection
Agency (US EPA) recognizes only 16 of them as priori-
ty pollutants owing to their carcinogenic properties.
These 16 PAHs are NAPH, ACY, ACE, fluorene (FLU),
ANTH, FLT, pyrene (PYR), BaA, chrysene (CHR),
benzo[b]fluoranthene (BbF), BKF, BaP,
dibenzo[a,h]anthracene, benzo[g,h,i]perylene (BghiP),
and indeno[1,2,3-cd]pyrene (INPY). PAHs are derived
from the incomplete combustion of oil, coal, petrol,
wood, garbage, tobacco, meats, and other carbon-
containing organic materials. Few PAHs are known for
their utilities, for example, NAPH is known for its use
as mothballs, and ANTH is used for making dyes, ex-
plosives, plastics, lubricants, and moth repellents. The
products that contain coal tars contain PAHs at low
concentrations as well. The primary sources of PAH
emissions are smoke, automobile emissions, and indus-
trial exhausts of petroleum refineries, fossils fuel power
plants, and coking plants, paper mills. In addition, natu-
rally occurring fires, such as bush or forest fires, and
active volcanoes release PAHs [1].

Methods of determining PAH compounds usually em-
ploy chromatographic techniques, such as gas chroma-
tography and liquid chromatography. Research on the
analysis of PAHs has been conducted, including the
development of extraction methods for different types
of samples and assembly of various types of stationary
phases [2-5]. Research on analytical methods to detect
PAHs is growing, including research to increase sensi-
tivity and find the separation factor of chromatography
to detect these compounds. Researchers continue to
develop PAH separation methods that are easier and
cheaper in practice [6-7]. Moreover, the environmental
friendliness of analysis methods has been a topic of in-
creasing focus of late. Since the 1970s, miniaturization
of the separation columns used in LC has been under-
taken [7-8]. Compared to the conventional column size,
that is, 4.0-6.0 mm LD., capillary columns have a
smaller diameter, that is, approximately 0.1-0.8 mm
I.D. The use of microcolumns in LC offers advantages
such as increased mass sensitivity owing to a decrease
in columncross-sectional area; low consumption of sol-
vent, reagent, and packing material; and use of exotic
mobile phase and mobile phase additives. Most im-
portantly, micro-column LCs can be directly coupled to
mass spectrometry (MS) apparatus, which is the best
detector for chromatography. However, decreasing the
size of the separation column also decreases its concen-
tration sensitivity owing to the limit of sample injection,
which is usually 0.2 L for most injectors. Capillary liq-
uid chromatography is more efficient in terms of chemi-
cal usage, and cost is a concern when selecting the
method used. In this study, we have attempted to find an
alternative method for effective separation of PAHs by
using environmentally friendly liquid chromatography.
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Materials and Methods

Reagents and materials. Commercial grade PAHs
(naphthalene, phenanthrene, anthracene, fluoranthene,
pyrene) were obtained from Nacalai Tesque (Kyoto,
Japan). Acetonitrile of HPLC grade was obtained from
Wako Pure Chemical Industries (Osaka, Japan). Ultra-
pure water was obtained from Simplicity UV system
(Milipore, Bedford, MA, USA) with an electrical resis-
tivity of 18.2 MIQ cm ', and it was used in all experi-
ments. Stock solution of PAHs, as well as their diluted
mixtures, were prepared in acetonitrile. Acrylamide was
purchased from Nacalai (Kyoto, Japan). All solutions
were filtered through PTFE 0.45 pm membrane filters
(GL chromatodisc). Develosil C30-UG was obtained
from Nomura Chemical, Seto, Japan. The reagents used
for preparing the Sil-S-ImC30 stationary phase were
obtained from Nacalai Tesque, except 3-Aminopropil-
triethoxylane (APTES), which was purchased from To-
kyo Chemical Industry.

Instruments. The capillary LC system used in this
work consists of an L.TEX 8301 micro-feeder equipped
with a MS-GAN 050 gas-tight syringe (0.5 mL Ito, Fuji,
Japan) as a pump, Rheodyne-7520 microinjection valve
(Cotati, California, USA) with an injection volume of
0.2 pL as an injector, 0.32 mm i.d x 0.45 mm o.d x 100
mm micro-column, Jasco UV-2075 as UV Detector, and
FP920 fluorescence detector (Jasco, Tokyo, Japan). Da-
ta were acquired using a CDS ver. 5 data processor
(LAsoft, Chiba, Japan).

Single and Mix analysis of PAHs. At the beginning,
single analysis of PAHs was conducted using 100%
acetonitrile as the mobile phase, C30 UG 5 develosil as
the stationary phase, UV detector with a wavelength of
254 nm, flow rate of 4 plL/min, and injection volume of
2 pL. Column size was 0.32 mm [.D. x 100 mm. The
concentration of each PAH was set to 10 ppm. The aim
of the experiment was to determine the suitability of
acetonitrile as a mobile phase for determining of PAHs.
In terms of mixing analysis, the condition was the same
as that in the single analysis, but different concentra-
tions of water were used in the mobile phase. The ace-
tonitrile:water ratio was varied as 60:40, 70:30, 80:20,
and 90:10.

Preparation of Sil-S-ImC30. Octadecylsilica is commonly
used as a stationary phase for separating polar and non-
polar compounds, but these compounds have weaknesses
such as incompatibility with highly mobile aqueous phase
and low selectivity toward polar solution. Chemical
modification of silica-based packing material by using
ionic liquids (ILs) is one approach to solve the above
problem. IL-modified silica has been used for the sepa-
ration of various solutes such as inorganic and organic
anions, cations, bases, phenols, PAHs. One of the ILs that
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Figure 1. Expected Reaction of Sil-S-ImC30

is usually used as a novel column packing material is
imidazolium. Imidazolium-modified silica can interact
with PAHs through n- & interaction. m-interactions are a
type of non-covalent interactions that involve n systems.
As in an electrostatic interaction, where a region of neg-
ative charge interacts with a positive charge, the elec-
tron-rich 7 system can interact with a metal (cationic or
neutral), an anion, another molecule, and even another ©
system, as in aromatic-aromatic interactions (m stack-
ing), which involves interactions of aromatic molecules
with each other [9-12].

Imidazolium-spaced octadecyl is prepared by co-
immobilization of two silane coupling agents (Dimethyl
octadecyl chlorosilane and 3-Aminopropyltriethoxysilane)
to  silica, followed by  quaternization  of
carbonyldiimidazole to form a polar-spaced phase. The
multiple interactions arising from the combination of
polar groups and lipophilic moieties, such as n—x, hy-
drogen bonding and hydrophobic interactions, endow
SCIL SPs with unique chromatographic performances,
such as fine hydrophobic and aromatic selectivity, and
recommendable isomer selectivity [13-16].

The reaction procedure (Figure 1) was as follows. 0.2 g
Silica, 0.2 g C30, 0.2 mL 3-Aminopropyltriethoxysilane,
and 3 ml toluene were mixed homogenously by using a
magnetic stirrer, and the mixture was treated in a stain-
less tube oven at 110 °C for 20 h. The resultant was
washed with dry toluene and dried at 75 °C for 4 h.
Thereafter, 0.2 g 1,1 Carbonyl diimidazole was mixed
with 3.5 mL toluene, treated in the oven at 80 °C for 24
h, and washed with methanol.
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Acrylamide As Quencher. Acrylamide was used as the
quencher in this experiment. The acrylamide concentration
was set to 0.03 M. Acrylamide solution was added to the
mobile phase to the extent of 25% volume of the total
mobile phase. The concentration of the mobile phase
was varied as 60%, 70%, 80%, and 90%, respectively.
The mobile phase comprised acetonitrile and water. The
function of acrylamide as a quencher in combination
with variation of the mobile phase concentration was to
increase sensitivity and degree of separation of each
PAH compound when using a fluorescent detector. The
excitation and emission wavelengths of the fluorescent
detector were 260 nm and 400 nm, respectively. The
stationary phase, flow rate, and injection volume used
were C30, 4 yL/min, and 2 YL, respectively.

Results and Discussion

Effect of acetonitrile concentration on retention
time. The results of single analysis using 100% acetoni-
trile as the mobile phase showed that distinct peaks with
different heights and areas of all PAHs appeared. The
peak with the greatest height and area was that of
anthracene, followed by phenanthrene, pyrene,
fluoranthene, and naphthalene. When using 100% ace-
tonitrile as the mobile phase, the retention times of each
the PAHs did not differ significantly, with the least be-
ing that of naphthalene, followed by phenanthrene,
anthracene, fluoranthene, and pyrene. This could be
ascribed to the presence of a thin aqueous layer between
the stationary phase and the analyte, meaning the
analyte could latch on the stationary phase only briefly,
and separation would not be good. According to the data
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in Figure 2, a greater amount of water must be added to
the mobile phase to create a substantial aqueous layer. It
is important to determine the percentage of water that
must be mixed with acetonitrile.
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The result of mixed analysis using various acetoni-
trile:water concentration ratios showed that increasing
the water content of the mobile phase increases the re-
tention time (Figure 3). This is because the proportion

100 mAbs

0 5
Time (min)
Column : C-30 UG5 Develosil (0.32 mm I.D x 100 mm)
Eluent : ACN 100%
Detector : UV 254 nm
Flow rate  :4 pL/min
Injection Vol : 0,2 uL
Sample

: 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4, Fluoranthene, 5. Pyrene (each 10 ppm)

Figure 2. Single Analysis of Each PAH by using 100% Acetonitrile as Mobile Phase

T T T T
¢ 50 mAbs

5

Time (min)

30

40

Column : C-30 UGS Develosil (0.32 mm I.D x 100 mm)

Eluent :(ACN:Water) a. (60:40), b (70:30), ¢ (80:20), d. (90:10)

Detector  : UV 254 nm

Flow rate :4 pL/min

Injection Vol: 0,2 pL

Sample : 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4, Fluoranthene, 5. Pyrene (each 10 ppm)

Figure 3. Mixed Analysis of PAHs using Various Concentrations of Acetonitrile
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of water in the mobile phase affects the retention time,
as shown in [17-19]. In reversed-phase chromatography,
adding water to the organic solvent as the mobile phase
could increase the solution polarity, causing the analyte
to elute at a slower rate depending on its polarity, but the
separation performance would be better.

The values of retention and separation are usually
describe in terms of capacity/retention factor (k) and
relative retention/separation factor (o), respectively.
When using an acetonitrile concentration of 90%, the
capacity factors of naphthalene, phenanthrene,
anthracene, fluoranthene, and pyrene were 0.72, 1.28,
1.43, 1.81, and 2.09, respectively, while the separation
factors between each PAH were 2.55, 1.18, 1.38, 1.11,
respectively. When using an acetonitrile concentration
of 80%, the capacity factors of naphthalene,
phenanthrene, anthracene, fluoranthene, and pyrene
were 1.06, 2.21, 2.53, 3.33, and 3.81, respectively, and
the separation factors between each PAH were 2.25,
1.16, 1.34, 1.14, respectively. When using an acetoni-
trile concentration of 70%, the capacity factors of naph-
thalene, phenanthrene, anthracene, fluoranthene, and
pyrene were 1.78, 4.00, 4.66, 6.25, and 7.09, respective-
ly, and the while separation factors between each PAH
were 2.08, 1.14, 1.32, 1.14, respectively. When using an

acetonitrile concentration of 60%, the capacity factors
of naphthalene, phenanthrene, anthracene, fluoranthene,
and pyrene were 4.44, 11.31, 13.31, 18.41, and 20.38,
respectively, and the separation factors between each
PAH were 1.78, 1.11, 1.27, 1.16, respectively. An in-
crease in the water concentration in the mobile phase
caused an increase in the capacity factor of each PAH
and the separation factor between each pair of PAHs. The
data are listed in Table 1.

Analytical Performance The use of LC with a capillary
column minimizes the amount of chemical compounds
used for analysis. In this study, some conditions were
employed to determine the analytical performance of
this LC on the analysis of PAHs. The stationary phase
used in this study was C-30 UGS Develosil, which
comprised slurry packed in a 0.32 mm x 100 mm fused
silica column, 70% acetonitrile as the mobile phase, UV
detector with an excitation wavelength of 254 nm, 4
pL/min flow rate, 0.2 pL injection volume. Six replica-
tions with a PAH concentration of 10 ppm were con-
ducted to determine the values of precision (%RSD),
LOD, and LOQ (Figure 4), while linearity (R?) was de-
termined using three levels of concentration of 1.5, 5,
and 10 ppm (Figure 5).

Table 1. Retention and Separation Factors for Various Acetonitrile Concentrations

Mobile Phase Naphthalene Phenanthrene Anthracene Fluoranthene Pyrene
(ACN: Water) K o} K o K o} K o K
60% 4.44 2.55 11.31 1.18 13.31 1.38 18.41 1.11  20.38
70% 1.78 2.25 4.00 1.16 4.66 1.34 6.25 1.14 7.09
80% 1.06 2.08 2.21 1.14 2.53 1.32 3.33 1.14 3.81
90% 0.72 1.78 1.28 1.11 1.43 1.27 1.81 1.16 2.09
T T
3
L 2 100 mAbs
\L/\/ \
. | . |
0 10 20
Time (min)
Column : C-30 UG5 Develosil (0.32 mm I.D x 100 mm)
Eluent : ACN 70 %
Detector : UV 254 nm
Flow rate  : 4 pL/min
Injection Vol : 0,2 uL
Sample : 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4, Fluoranthene, 5. Pyrene (each 10 ppm)

Figure 4. Chromatogram of Mixed Analysis of PAHs with Six Replications
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Table 2 shows that %RSD by retention time of each of
the PAHs was in range of 0.54-1.87, while the ideal
standard value of %RSD was < 2%. Therefore, the %
RSD by retention time obtained in this work is within
the ideal standard value. Furthermore, the %RSD by
area value of naphthalene, phenanthrene, anthracene,
fluoranthene, and pyrene are 3.43, 6.34, 6.46, 12.42, and
5.12, respectively. The R* values of naphthalene, phenan-
threne, anthracene, fluoranthene, and pyrene are 0.8791,
0.9992, 0.9983, 0.9022, and 0.999, respectively. The
LOD values of naphthalene, phenanthrene, anthracene,
cene, fluoranthene, and pyrene are 4.7, 5.0, 5.4, 15.1,
and 4.9, respectively. The LOQ values of naphthalene,
phenanthrene, anthracene, fluoranthene, and pyrene are
15.6, 16.6, 17.9, 50.5, and 16.2, respectively. The ex-
pected %RSD Horwitz for 10 ppm concentration is 11,
but the maximum acceptable %RSD is 22. According to
the above data, all %RSD values all PAHs were under

the maximum acceptable value. The standard value of
R? is 0.95, and the R® values of naphthalene and
fluoranthene are under the standard value, but those of
phenanthrene, anthracene, pyrene are above the standard
value.

Separation of PAHs Using Sil-S-ImC30. In two-
dimensional chromatography, two types of chromatog-
raphy system are used. Sil-S-ImC30 has two function
both hydrophobic and hydrophilic, so that by employing
this column, two retention mechanism would occur.
First, the hydrophobic retention mechanism works in the
presence of a long carbon chain of C30 from Sil-S-
Im30. Then, second, the hydrophilic retention mecha-
nism works in the presence of NH, chain on the com-
pound. While imidazole serves two functions of hydro-
phobic and hydrophilic stationary phase.

10 mAbs

W J b
I P NN M c |
. 1|O .

0
Time (min)

Column : C-30 UGS Develosil (0.32 mm I.D x 100 mm)
Eluent : ACN 70 %
Detector : UV 254 nm
Flow rate  :4 pL/min
Injection Vol : 0,2 uL
Sample : 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4, Fluoranthene, 5. Pyrene

Sample Conc : a. 1.25 ppm, b. 5 ppm, c. 10 ppm

Figure 5. Chromatogram of Mixed Analysis of PAHs with Three Levels of Concentration

Table 2. Values of Precision (%RSD), Linearity (R%), Limit of Detection (LOD), and Limit of Quantification (LOQ)

PAHS RSD by Retention Ti;)le RSD by Area R’ LOD pprOQ
Naphthalene 1.87 3.43 0.8791 17.1 57.0
Phenanthrene 0.63 6.34 0.9992 0.9 3.1
Anthracene 0.75 6.46 0.9983 0.8 2.6
Fluoranthene 0.54 12.42 0.9022 20.2 67.5
Pyrene 0.62 5.12 0.9990 4.9 16.4
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A test mixture of PAHs composed of naphthalene,
phenanthrene, anthracene, fluoranthene, pyrene was
used in the chromatographic evaluation of silica-spaced
imidazole C-30 stationary phase. By regulating acetoni-
trile contents, excellent separation of the PAH mixture
was achieved with acetonitrile-water (70:30, v/v) as the
mobile phase. Figure 5 shows symmetric peaks and better
resolutions of PAHs. These PAHs have conjugative
rings or large electronic clouds, so interactions such as
hydrophobic, electrostatic, and ©-m interactions, with
the stationary phase are strong, resulting in strong re-
tention. Compared to the commercial ODS, it was
found that Sil-S-ImC30 shows the same selectivity for
the six PAHs.

Given that a few imidazole groups were bound to the
carbon chain in the stationary phase molecule, this sta-
tionary phase may have a hydrophobic characteristic.
PAHs are the best specimens for showing the hydro-
phobic characteristics of the stationary phase. The
retention mechanism of the Sil-S-ImC30 stationary
phase was based on the existence of a few hydrophobic
and 7-to-m interactions in the separation of PAHs.

Table 3 shows the column efficiencies of naphthalene,
phenanthrene, anthracene, fluoranthene, and pyrene with
the Sil-S-ImC30 column and the C30 column (Figure 6),
and the corresponding values are 2042, 1677, 2172,

Table 3. Value of Column Efficiency (N), Separation Factor (o), and Retention Factor (k) of Sil-S-ImC30 and C30

Value
PAHs Sil-S-ImC30 C30
N 2042 2085
Naphthalene K 16.00 5.39
o 1.81 1.81
N 1677 1716
Phenanthrene K 29.00 9.78
o 1.14 1.14
N 2172 2216
Anthracene K 33.00 11.11
o 1.28 1.29
N 3574 3688
Fluoranthene K 42.33 14.33
o 1.11 1.11
Pyrene N 4406 4531
y K 47.00 15.89
T T
3
[ 2 1 50 mAbs 7
4 5
1
MW_,J a ]
b
L Il Il
(0} 10 20

Time (min)

Column

Eluent : ACN 70 %
Detector : UV 254 nm
Flow rate : 4 nL/min
Injection Vol : 0,2 pL
Sample

ra. Sil-ImC30 (0.32 mm I.D x 100 mm), b, C30 (0.32x100mm)

: 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4, Fluoranthene, 5. Pyrene (each 10 ppm)

Figure 6. Performance of Sil-s-ImC30 Column
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3574, 4406 and 2085, 1716, 2216, 3688, 4531. With in-
creasing conjugative systems of molecules in naphthalene,
phenanthrene, anthracene, fluoranthene, and pyrene, the
retention factors obtained when using Sil-S-ImC30 in-
creased from 16 to 47 and those obtained when using
C30 increased from 5.39 to 15.89 with 70% (v/v) ace-
tonitrile—water as the mobile phase. The separation fac-
tors between Sil-S-ImC30 and C30 are almost equal,
ranging from 1.11 to 1.81 with a tolerance of about 1-2.
Sil-S-ImC30 provided a better retention factor value
than C30, but its separation factor and column efficien-
cy are not significantly different from those of C30.
C30 is known to be a good stationary phase for non-
polar compounds, but Sil-S-ImC30 facilitates multiple
interactions by combining polar groups and lipophilic
moieties, such as n—m, hydrogen bonding and hydropho-
bic interactions, which endows SCIL SPs with unique

. 1
[x107] T T
1.5¢ .
=
g 1f ]
=
%
0.5}
0
0 10
Time= {min)
3
[x10°]
aoaf

Abzorbancs
"

Remarks:

chromatographic performance, such as fine hydrophobic
and aromatic selectivity, and commendable isomer selec-
tivity [13-16]

Effect of Quencher. Quenching is a process that de-
creases the intensity of fluorescence, and as such, may be
the result of a variety of processes. Acryamide is usually
used as quencher in the determination of proteins, and
good results have been obtained in a few studies when
using acrylamide as a quencher. Acrylamide quenching
is very sensitive to the degree of tryptophan accessibil-
ity to the solvent containing acrylamide [20].

In this case, it is expected that any contact quenching
during the addition of acrylamide would increase sensi-
tivity, meaning detection and separation would be better.
In contact quenching, the donor and acceptor molecules
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Sample: 1. Naphthalene, 2. Phenanthrene, 3. Anthracene, 4. Fluoranthene, 5. Pyrene (each 10 ppm)
Mobile phase: ~ Chromatogram 1. A. Acetonitrile 60%, B. Acetonitrile 60% + Acrylamide 0.03 M
Chromatogram 2. A. Acetonitrile 70%, B. Acetonitrile 70% + Acrylamide 0.03 M

Chromatogram 3. A. Acetonitrile 80%, B. Acetonitrile 80% + Acrylamide 0.03 M

Chromatogram 4. A. Acetonitrile 90%, B. Acetonitrile 90% + Acrylamide 0.03 M

Figure 7. Effect of Acrylamide with Variation of Mobile Phase Concentration on Separation
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interact by means of proton-coupled electron transfer
through the formation of hydrogen bonds. In aqueous
solutions, electrostatic, steric, and hydrophobic forces
control the formation of hydrogen bonds. When the hydro-
gen-bonded acrylamide-PAHs complex absorbs energy
from light, the excited state immediately returns to the
ground state without emission of a photon, and the mol-
ecules do not emit fluorescent light. A characteristic of
contact quenching is a change in the absorption spectra
of the two molecules when they form a complex [21].
Using a fluorescent detector and acrylamide as quencher
had no impact on the separation and sensitivity in the
determination of PAHs. The concentration of the mobile
phase impacted the retention time in the determination
of PAHs. Theoretically, the quencher must have an im-
pact on detection sensitivity, but any such effect was not
observed, probably because acrylamide as a quencher
was suspended shortly (Figure 7).

Conclusion

A LC system equipped with a capillary column offers
good PAH determination performance. The separation
factor increased with increasing water content in the
mobile phase. Sil-S-ImC30 provided a good separation
factor, while the use of acrylamide as a quencher had no
impact on separation.
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