Smart City

Volume 4 Issue 1 *Tomorrow's Cities Today: Advancing Sustainability in Smart Urbanism*

Article 7

7-12-2024

Factors Influencing Bridge Inspection in Developing Countries, Challenges and Future Directions: A Systematic Literature Review

Tuba Arshad Universitas Indonesia, tubaarshad713@gmail.com

Dr. Rully Andhika Karim

Ayomi Dita Rarasati

Follow this and additional works at: https://scholarhub.ui.ac.id/smartcity

Part of the Construction Engineering and Management Commons

Recommended Citation

Arshad, Tuba; Andhika Karim, Dr. Rully; and Rarasati, Ayomi Dita (2024) "Factors Influencing Bridge Inspection in Developing Countries, Challenges and Future Directions: A Systematic Literature Review," *Smart City*: Vol. 4: Iss. 1, Article 7. DOI: 10.56940/sc.v4.i1.12 Available at: https://scholarhub.ui.ac.id/smartcity/vol4/iss1/7

This Literature Review is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Smart City by an authorized editor of UI Scholars Hub.

FACTORS INFLUENCING BRIDGE INSPECTION IN DEVELOPING COUNTRIES, CHALLENGES AND FUTURE DIRECTIONS: A SYSTEMATIC LITERATURE REVIEW

¹Tuba Arshad^{*}, ²Rully Andhika Karim, ³Ayomi Dita Rarasati

¹Civil Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia

*Correspondence: <u>tubaarshad713@gmail.com</u>

ABSTRACT

Bridges are very important to promote economic growth, mitigate poverty, and address persistent environmental issues. With the construction of new bridges, it is crucial to have an effective bridge inspection procedure. But most developing countries are still struggling in this This review examines common factors affecting bridge inspection in developing field. countries and their impact on bridge condition and performance while exploring strategies to improve those factors in developing countries in a systematic review. A total of 172 articles were identified through an explorative search of Direct Scopus, Google Scholar, and handsearch with limitations of the years 2013 to 2024. Only 15 articles were considered and classified based on the related topic of research study and keywords, such as Inspection of infrastructure, Improvement of bridge inspection, maintenance, and developing countries related articles. The findings from previous research studies show that the factors budget, resources, policies/Laws/regulations, Bridge age, and transparency are the factors that influence bridge inspection practices in developing countries. It is important to work on these factors to improve bridge inspection in developing countries. The recommendations from previous studies that can improve these factors are exploring new funding sources, enhancing the training programs, introducing cutting-edge technologies, updating standard guidelines every year, developing a centralized online portal to give regular updates of inspection data, and advocating for long-term planning. Therefore, this analysis concludes that bridge inspection practices can be improved in developing countries by improving all those factors.

Keywords: Bridge inspection; Developing countries; Inspection infrastructure; Improvement strategies; Transportation infrastructure

INTRODUCTION

In this modern era of transportation, where flyovers, bridges, and underpasses are common features of almost all cities, there is a need for a compelling monitoring and management system to assess the health of critical city infrastructure. Any damage to these structures, particularly bridges, may reduce their lives and induce the risk of collapse that can cause economic and physical damage. Therefore, stronger, and safer bridges are imperative to minimize financial losses from rehabilitations and save lives (Azeem et al., 2021). It has been observed that there is no effective bridge maintenance plan in most of the developing countries and that in most cases maintenance is carried out after an event has occurred and resulted in severe damage and caused a public outcry. Also, developing countries have limited budgets for maintaining their assets. Therefore, it is very important to have an assessment criterion as a development tool to optimize the use of scarce maintenance budgets and get the most out of aging bridge networks.

There is currently no mechanism in the Pakistan Highway Department for periodically assessing the state of bridges (Uddin et al., 2023a). There is a tremendous load of pending rehabilitation works on bridges in many developing countries like Pakistan. Such problems can be seen in most of the national highways in Pakistan (Qureshi et al., 2017a). Pakistan has seen regular disasters in the form of bridge collapses due to poor construction quality and monitoring, and irregular maintenance schedules (Inam et al., 2023a). According to the Roads and Highways Department (RHD) of Bangladesh, there are 4,507 bridges under the department, of which 996 are Bailey bridges. Of them, 973 have steel decks while the rest have wooden decks (The Daily Star, 2020). Due to a lack of repair, maintenance, and supervision, most of the Bailey bridges suffer from a high rate of deflection. A bridge failure causes a huge loss of life and assets and interrupts mobility. Inspection of bridges and regular data observations are essential for safe, durable, and smooth bridge operation (n.d.-a).

The study highlights a distinct pattern of failure of bridges in India, and the causes of failure are different from those of developed nations. There have been considerable effects on users when a bridge fails, causing causalities as well as injuries apart from other effects on day-today working and regional economy. The failure of bridges imposes a strain on surface transportation and an economic burden because of socio-economic disturbances (Garg et al., 2022a). Thailand and Indonesia are still expanding and seeking the most optimum bridge inspection and maintenance regulation. Updating the inspection manuals is necessary to meet the needs of each country, particularly the developing countries (Puspitasari et al., 2023a).

The objective of this paper is to systematically review the previous studies on bridge inspection in developing countries and its improvement through identifying the factors/challenges, and future strategies. Two Research Questions are defined to structure this review. These questions investigate the (a) What are the factors affecting bridge inspection practices in developing countries? (b) What are the recommendations that can improve the factors affecting bridge inspection in developing countries?

METHODOLOGY

Searching Strategy

This systematic review uses the PRISMA9I999 software for the article selection (Shamseer et al., 2015) including eligibility and screening. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method is a comprehensive and structured approach to ensure transparency and rigor in the reporting of systematic reviews and meta-analyses. Screening research articles using the PRISMA method involves several steps that align with the PRISMA checklist and flow diagram. The publication is limited from 2013 to 2024 and all are in English language. The keywords and controlled vocabulary concepts are applied to the research topic. Two databases were used (Scopus and ScienceDirect). The search was limited to keywords, peer-reviewed journal articles, and abstracts in English language. The hand-searching method is also used in this search strategy. See the table below for the search terms and keywords.

P: Product or process	I: Impact(s) of interest	F: Flows	T: Type(s) of life cycle
			assessment
"future directions" OR	Inspection w/5	Bridge or Culvert or	Improvement OR
policy OR challenges	infrastructure or "survey	flyover or highways	improvements
	infrastructure" or		
	investigation W/5		
	infrastructure or		
	Transportation w/3		
	Infrastructure		

 Table 1 Keywords of the study focus. (search strategy)

Literature Screening and Inclusion/Exclusion Criteria

The articles that are not related to bridge inspection/maintenance are excluded. The included articles are related to bridge inspection/maintenance in developing countries and some of them are from developed countries to make a comparison. The study's screening process began by excluding non-English articles, and then the remaining citations underwent a first round of screening for relevancy based on their abstracts or full documents. In the second round, irrelevant and duplicate articles were filtered out using specific inclusion criteria. The primary inclusion criterion for the studies was documentation of the bridge inspection in developing countries. The challenges developing countries are facing and factors that are affecting the inspection of bridges in developing countries. Studies were excluded if they did not mention the bridge inspection of bridges. The review focuses on the factors affecting the inspection of bridges like funds, resources, advanced technology, policies, qualified bridge inspection engineers, and their impacts on bridge inspection. Previous studies and literature were included for a comprehensive analysis of the challenges of bridge inspection in different developing countries.

Quality assessment

The study used research publications and review papers to collect high-quality documents. To ensure reliable findings, duplicates were reviewed and found using Rayyan before being exported to Mendeley. Article abstracts were carefully evaluated to ensure quality and relevance, and each study paper was carefully analysed to ensure validity and reliability.

Data cleaning

A systematic review attached to the PRISMA method has been previously suggested. The data cleaning process was facilitated by the Rayyan tool for literature reviews, which was subsequently exported in the RIS format for compatibility with the Mendeley application. The Mendeley application was then used to obtain PDF documents for the full text.

Results of the study

This review identified 182 original papers found through the database search. After removing 10 duplicate records and screening 172 papers by title and abstract, 161 were excluded because these studies were not specifically for inspection/maintenance. Most of these articles are related to the construction of transportation and infrastructure, 0 articles were retrieved. Following the full-text screening, 4 out of 11 papers were excluded because these were not related to bridges, resulting in 7 articles included in the review and 8 articles from hand searching so the total number of articles included in the review is 15. Consider Figure 2, a flow diagram of a database search profile. Most of these articles were published between 2013 to 2024 and were published in Pakistan, India China, Taiwan, Egypt, Bangladesh, Iran, USA, and UAE. Some of these articles were found by hand-searching (Amin & Okui, 2015; Garg et al., 2022b; Novak et al., 2018; Outay et al., 2020; Puspitasari et al., 2023b; Uddin et al., 2023b). In general, studies focused on bridge inspection in developing countries and its improvement (Amin & Okui, 2015; Bridges in Bangladesh, n.d.-b; Avelina et al., 2022; Ilbeigi & Pawar, 2020; Joshi, 2023; Qureshi et al., 2017b; Uddin et al., 2023b). All studies have mentioned the factors that affect bridge inspection in developing countries. Two studies mentioned the reasons for the collapse of bridges in previous years in developing countries (Garg et al., 2022b; Inam et al., 2023b). Two studies are the comparison of developed countries and developing countries (Avelina et al., 2022; Puspitasari et al., 2023b).

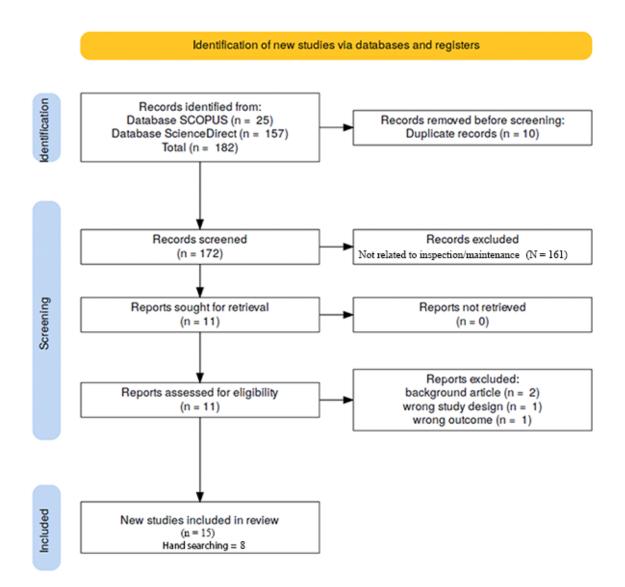


Figure 1 Flow diagram of database search (PRISMA) Source: (Moher et al., 2015)

Author	Title	Country	Journal	Limitation of Study
(Qureshi et al.,	Investigation regarding	Pakistan	Tecnical Journal	used limited data
2017b)	bridge expansion joints		Uet Taxila	images for inspectin.
	deterioration in		Pakistan	
	Pakistan and its			
	remedial measures			
(Hina Inam	Smart and Automated	Pakistan	Sustainability	use limited images to
2023)	Infrastructure		2023, 15, 1866	study the cracks. and
	Management: A			research based on
	DeepLearning			few types of
	Approach for Crack			cracksSelection
	Detection in Bridge			biases.
	Images.			
(Yu-Han	A Big Data Approach	Taiwan	Sustainability	Used limited
Chuang 2023)	for Investigating Bridge		(Basel,	variances in the
	Deterioration and		Switzerland)	degree of
	Maintenance Strategies			deterioration.
	in Taiwan.			
		T 1'		D'1
(Sachidanand	Recent Enhancement of	India	Sachidan and	Did not study
Joshi 2022.)	indian bridge		Joshi	advance technology
	management system		IBMS/UBMS	
	(IBMS TO UBMS)	CI.		1'1'1'
(DYoseok	Bridge inspection	China	International	generalizability of
Jeong 2018)	practices and bridge		Journal of Aviation Science	findings.
	management programs in China, Japan, Korea,		and Technology	
	and U.S.		and rechnology	
(YaDina	An assessment model	Egypt	Ain Shams	Case Study limited to
Mahmoud,	for identifying	-575	Engineering	Egypt or developing
2019)	maintenance priorities.		Journal	countries.
(Dan SuID1,	Study on optimization	China	PLOS ONE	Limited to concrete
Yisheng Liu1.,	of inspection		August 12, 2021	bridges.
2021)	mechanism of concrete		6 ···, -·- i	G
,	beam bridge.			
(Mohammad	Probabilistic Model for	Stevens Institute of	Infrastructures	Insufficient factors
Ilbeigi, 2020)	Optimal Bridge	Technology USA	2020,	
	Inspection Interval.			
	1			

Table 2 General characteristics of articles

(WMijia Yang	Possibility of Bridge	China	Appl. Sci. 2021,	Hard to use this
* and Chang	Inspection through		11, 69.	method of inspection
Liu., 2021)	Drive-By Vehicles.		11,000	on highly rough
214., 2021)	Dire By Venicies.			surface.
(Junwon Seoa,	Drone-enabled bridge	cross-sectional	Automation in	Use of drons
(Juliwoli Seoa, 2018)	inspection methodology	study/ Iran	construction	Use of drons
2018)	and application.	study/ Ifall		
	and application.			
	D 11	D.1.	126	
(Muhammad	Bridge maintenance	Pakistan	Natural and	Limited Factors
Ghiyas Uddin,	parameters: a case study		Applied Sciences	
2023)	of railway bridges in		International	
	Pakistan.		Journal (NASIJ)	
(II		Country 1 1114	Survey 1 111	St. L. 1. 4.1 4
(Hyunsik Kim	Scenarios for Life Cycle	Sustainability	Sustainability	Study limited to
1, 2020)	Studies of Bridge	(Basel, Switzerland		concrete bridges.
	Concrete Structure			
	Maintenance.			
(Junwon Seoa,	Drone-enabled bridge	cross-sectional	Automation in	Use of drons
2018)	inspection methodology	study/ Iran	construction	
	and application.		94((2018)112-	
			126	
(David C.	Performance-related	Vermont Agency of	IJQRM 35,10	Restricted data size \times
Novak, 2018)	specification and	Transportation,		
	payment modifiers in	Montpelier,		
	highway construction	Vermont, USA		
	projects.			
(Momtaz et	Multi-modal deep	University of	Journal of	Restricted data size
al., 2023)	fusion for bridge	Virginia,	Infrastructure	
	condition assessment.	Charlottesville, VA,	Intelligence and	
		USA	Resilience	
(Fatma Outay,	Applications of	College of	Transportation	Use of technology
2020)	unmanned aerial vehicle	Technological	Research Part A	like drons
	(UAV) in road safety,	Innovation (CTI),		
	traffic and highway	Zayed University,		
	infrastructure	Dubai, United Arab		
	management: Recent	Emirates		
	advances and			
	challenges.			
	č			

Background/Challenges different developing countries are facing in inspecting the Bridges

Insufficient funding and inadequate training are paramount in bridge maintenance in Pakistan. Furthermore, harnessing technological advancements offers promise but demands specialized training and considerable investments. Due to economic difficulties, it has become challenging to reconstruct old bridge structures, including steel triangulated, masonry, and concrete bridges (Uddin et al., 2023b). There is a tremendous load of pending rehabilitation works on bridges in many developing countries like Pakistan. Such problems can be seen in most of the national highways in Pakistan. However, it is a known fact that Pakistan does not have sufficient funds to be allocated for bridge repairs and hence only PKR 500 to 600 million is assigned yearly to maintain and renovate in total of over 5000 bridges. In addition to this, the lack of expertise has led the local authorities like provincial and national highway departments to flatten the depreciated bridges. In some places, this demolishing was done for only the superstructures but most of the time the whole structure was flattened (Qureshi et al., 2017b). The challenges Pakistan is facing are poor construction quality and monitoring, and irregular maintenance schedules. Many bridges have been collapsed over the last two decades in Pakistan, causing many casualties Table 1 shows the location, year, and casualties caused by bridge collapses in Pakistan in the last two decades (Inam et al., 2023b).

Year	Name/Location	Casualties	Ref
2006	Kalpani Bridge, Marden KPK, Pakistan	70	[25]
2007	SherShah Bridge, Karachi Sindh, Pakistan	4	[26]
2007	Northern Bypass Bridge, Karachi, Sindh, Pakistan	10	[27]
2018	Kundal Shahi bridge, Neelam valley Kashmir, Pakistan	40	[28]
2018	Jagran Nullah, Neelum Valley Kashmir, Pakistan	25	[29]
2022	Hassanabad Bridge, Hunza Gilgit-Baltistan, Pakistan	-	[30]
2022	Gohati Bridge, Swabi KPK, Pakistan	-	[31]

Figure 1 Bridges Collapses in Pakistan (Inam et al., 2023b)

The data related to the failure of bridges that occurred during the period 1977–2017 in India have been collected from various sources, there have been considerable effects on users when a bridge fails, causing causalities as well as injuries apart from other effects on day to day working and regional economy. The failure of bridges imposes a strain on surface transportation and an economic burden because of socio-economic disturbances. The average age of failure of bridges is 34.5 years, which is very low compared to the expected design life. Regular inspection is mandatory to avoid this situation. The challenges India is facing are lack of funds, natural disasters, low-quality material during construction, poor design, and deterioration of the material because of no proper inspection practices.

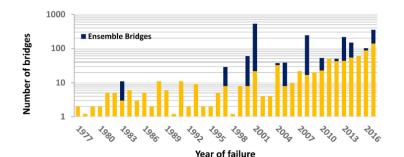
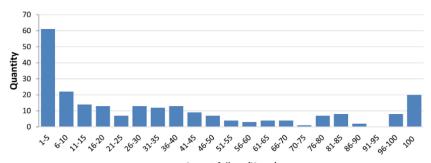
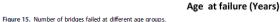




Figure 14. Year-wise distribution of failures of bridges (semi-log scale).

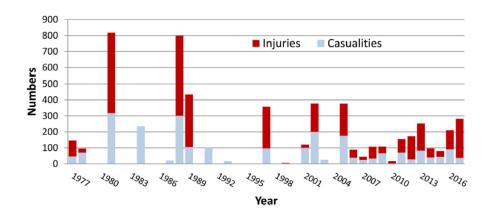


Figure 3 Failure of bridges in India from 1977-2017 (Garg et al., 2022b)

Thailand and Indonesia are still expanding and seeking optimum bridge inspection and maintenance regulations. Updating the inspection manuals is necessary to meet the needs of each country, particularly the developing countries (Puspitasari et al., 2023b). This concern suggests that there is room for improvement in the current bridge inspection practice in Indonesia. The challenges that Indonesia is facing in the bridge inspection field are a lack of advanced technology in the data collection system, improvement of supervision, and improvement of the bridge rating system. In Indonesia, advanced technology is only used for special inspection purposes. Non-destructive testing is widely used to examine a structure's condition without causing damage. In 2009, Structural Health Monitoring Systems (SHMS) was installed on a long-span bridge, Suramadu, to monitor the long-term conditions. The retrieved data was then processed to extract damage-sensitive information for further analysis to determine the bridge's health status. However, the detailed inspection to measure the bridge condition relies on the visual inspection in the field. The adoption of UAV and the data postprocessor can minimize human errors in extracting defective data and reduce

postprocessing time. Below fig is a comparison of Indonesian inspection practices with other countries (Avelina et al., 2022).

	TABLE I BRIDGE INSPECTION TYPES A	ND INTERVALS		
nspection	Description	Interval	Strengths	
he U.S. nitial inspection outine inspection	 Collect inventory data and set the interval for other inspections Investigate the bridge's physical and functional condition 	Within three months of openingNot to exceed 24 months*	NSTM and underwater inspections help in identifying damages in critical structures that	
n-depth inspection amage inspection	 Further investigation after a routine inspection Assess damages caused by environment or human action 	 Follow-up of routine inspection Unscheduled 	are often overlooked during routine inspections	
ISTM inspection	 Examine NSTM, whose failure could cause bridge collapse 	 Not to exceed 24 months* 		
Inderwater inspection pecial inspection	 Survey the sub-merged substructures Monitor a suspected defect or unusual characteristics 	 Not to exceed 60 months* At the discretion of the bridge owner 		
he U.K. afety inspection frincipal inspection procial inspection (SI) pspection for assessment	 Identifying significant deficiencies can lead to danger Provide information on the physical condition More comprehensive than a general inspection Examine a particular element that is causing concern Provide the information for structural assessment 	 At the discretion of the bridge owner At intervals of 24 months At intervals of 72 months* At intervals of 12 months; or after 6 SI* 	Structural assessment helps in detailed planning at the project level	
ustralia (Victoria) nitial inspection outine inspection tructure condition inspection ngineering investigations Aonitor inspection	 Identify defects that might affect safety and/or serviceability Measure the condition of structures Survey a specific issue of an individual structure Investigation of bridges that have deficient live- load capacity 	 Within 12 months of opening Min. twice per year at max. 6-month interval* At an interval of 2 – 5 years* 	Exclusive attention to load rating helps in a more detailed analysis	
hina outine inspection eriodic inspection pecial inspection	 Visual inspection to detect abnormalities in the element Quantify bridge health status Bridge damage quantification, load rating, and serviceability assessment after extreme events 	Monthly basisAt max. 3-year interval*	The special inspection covers a thorough and detailed assessment for in-depth analysis	
		interval		
ndonesia nventory inspection Soutine inspection Detailed inspection Special inspection VSTM: Nonredundant steel te	 Register the bridge inventory data Monitor bridge safety and user convenience Assess bridge conditions For non-visually detectable damage during a detailed inspection 	 After completion Annually At max. 5-year interval* 	Adequately collect: the information require for analysis with less investmen of resources	

Figure 4 Comparison of Indonesian bridge inspection practices with other countries

In Bangladesh Based on the inspection and evaluation of 1185 bridges and 4003 culverts in the Cumilla and Rangpur zones. A significant number of bridges and culverts require emergency countermeasures. we need to look thoroughly at the low maintenance cost, choosing bridge forms that match the beautiful river setting of the country, and owning a resilient infrastructure offering the least life cycle cost for the future land transport network not only for Bangladesh but for the Asian region The challenges Bangladesh is facing are lack of funds and its distribution, lack of resources (Bailey Bridges in Bangladesh, n.d.-b).

Table 2. Safe and unsafe bridges according to deflection results by RTS (Due to dead load only).

Jo.	Bridge Name	Span, L (m)	Deflection	AASHTO	$\Delta \div L$	Remarks
			$\Delta_{\rm DL}$, (mm)	Limit (mm)		
	Kurir Chor Bridge	24.39	81	30.49	0.0033	Unsafe
	Baiguni Bridge	30.48	78	38.11	0.0026	Unsafe
	Hajibari Bridge	36.59	84	45.73	0.0023	Unsafe
	Katakhali Bridge	43.29	93	54.12	0.0021	Unsafe
	Chondidas Bridge	29.27	60	36.59	0.0020	Unsafe
	Bahuli Bridge	33.53	51	41.92	0.0016	Unsafe
	Boikunthopur Bridge	33.54	51	41.92	0.0015	Unsafe
	Kholishagura Bridge	24.39	36	30.49	0.0014	Unsafe
	Hasildoho Bridge	36.59	54	45.73	0.0014	Unsafe
0.	Pontarjan Bridge	39.63	54	49.54	0.0013	Unsafe
1.	Mohadebpur Bridge	41.15	42	51.07	0.0011	Safe
2.	Buruj Bridge	42.07	36	52.59	0.0009	Safe
3.	Sonai Bridge	18.29	12	22.87	0.0006	Safe

Figure 5 Bridges that are unsafe to use in Bangladesh.

Figure 5 is showing the names of bridges that are unsafe in Bangladesh. (Bailey Bridges in Bangladesh, n.d.-b) this study showing the main reason to bridge failure in over loading, but author mentions another big reason lack of inspection and maintenance. "Apart from the case of overloading, one unseen reason is uncovered in this paper. Due to lack of repair, maintenance and supervision, most of the bailey bridges suffer from high rate of deflection. A bridge failure causes huge loss of life, assets and interrupts mobility. Inspection of bridges and regular data observations are essential for safe, durable and smooth bridge operation."

Egypt currently maintains a road network of more than 64,000 km across the country, including more than 3,000 bridges. Statistics of GARBLT show that nearly 98% of the country's domestic cargo relies on this road network which means that this road network plays a major role in Egypt's national economy and have a significant impact on the daily activities of citizens. Yet those bridges and roads haven't been properly maintained to prevent their degradation and deterioration. It is a fact that about half of Egypt's bridges are 50 years old or older as reported by GARBLT's Referring to types of bridges in Egypt, reinforced concrete bridges constitute about 90% and steel bridges are less than 10% Due to all the aforementioned factors, it is very important to develop an assessment model for bridges in Egypt taking into consideration the limited financial resources of the country (Mohamed Mansour et al., 2019), this study mentions the maintenance priorities strategies for bridges in Egypt. For example, it mentions the history of bridges, the life of bridges, construction year, climate, loading, etc, but it mentions another main factor inspection quality IQ" (Mohamed Mansour et al., 2019) In this study author mentioned that maintenance strategies can not be improved or measured correctly until IQ get improved.

Author	Focus of Study	Factors
(Liaqat A. Qureshi 2014)	Investigation regarding bridge expansion	Budget, resources, negligence in
	joints deterioration in Pakistan and its	inspection
	remedial measures	
(Hina Inam 2023)	Smart and Automated Infrastructure	Budget, resources, Area/country
	Management: A DeepLearning Approach	previous data
	for Crack Detection in Bridge Images	
(Yu-Han Chuang 2023)	A Big Data Approach for Investigating	Data mining, lack of qualified
	Bridge Deterioration and Maintenance	bridge inspectors, less
	Strategies in Taiwan	maintenance budget/funds
(Sachidanand Joshi 2022.)	Recent Enhancement of Indian Bridge	Data collection/ Previous data,
	Management System (IBMS TO UBMS)	Data collection method,
		Experienced Bridge inspection
		Engineers experience
(DYoseok Jeong 2018)	Bridge inspection practices and bridge	Qualified Bridge inspectors,
	management programs in China, Japan,	inspection Data, Bridge rating/Age
	Korea, and the U.S.	

Table 3 Summary of Factors Affecting Inspection of Bridges

Author	Focus of Study	Factors		
(YaDina Mahmoud, 2019)	An assessment model for identifying	Country Type, Budget, Bridge		
	maintenance priorities.	rating, Resource		
(Mohammad Ilbeigi,	Probabilistic Model for Optimal Bridge	Bridge rating, historical		
2020)	Inspection Interval	deterioration data, environmental		
		factors, previous condition		
(WMijia Yang and Chang	Possibility of Bridge Inspection through	Road Roughness, Vehicle		
Liu., 2021)	Drive-By Vehicles	acceleration		
(Momtaz et al., 2023)	Multi-modal deep fusion for bridge	Data Size		
	condition assessment			
(David C. Novak 2018)	Assess the quality to maintain the	Historic Data, Budget		
	transportation system			
(Fatma Outay, 2020)	Using drones to inspect and maintain	Budget/Funds		
	infrastructure			
(Uddin et al., 2023b)	Bridge maintenance parameters	Standard maintenance, Funding,		
		training, Technology		
(Junwon Seoa, 2018)	Inspection of bridges by Drones	weather, environment, Location,		
		qualitative data		
(Hyunsik Kim 1)	The purpose of this study is to derive an	Cost, Budget, Environmental		
	appropriate method of calculating the environmental impact and cost caused by	impacts, Bridge rating, age, Service years		
	maintaining the concrete structure of a	5		
DL OG	bridge during its service life.			
(PLOS ONE)	The objective of this study is to improve the inspection mechanism of concrete beam	Bridge technical condition rating, Geometric attribute,		
	bridge and improve the efficiency and	Structure attributes, Operating		
	effect of bridge inspection.	conditions, Environmental factor,		

RESULTS AND DISCUSSION

The factors that influence bridge inspection are outlined in **Table 3**, based on previous studies. A study by Uddin et al. (2023b) identifies the factors (standard maintenance, funding, training, technology) that affect bridge inspection in Pakistan, a developing country. Standard maintenance refers to the level of attention and maintenance provided to a bridge to ensure consistent and safe operation. It encompasses methods, recommendations, and rules for maintaining, repairing, and monitoring the bridge. To establish an effective maintenance plan, it is essential to consider the bridge's design, operation, and construction. The plan should encompass steps for routine inspection and monitoring to identify and rectify any deterioration or damage that could jeopardize the bridge's integrity. Additionally, it should delineate the responsibilities, timelines, and accountability for all components of the bridge structure.

The most crucial parameter of bridge maintenance is adequate funding, which guarantees the availability of the necessary resources to keep bridges in good condition. A thorough evaluation of the condition of bridges can help identify maintenance requirements and calculate associated

costs to ensure adequate funding. After surveying, according to 64.3% of respondents, a lack of funding is the most significant difficulty inspectors face when inspecting bridges. Training is essential to bridge maintenance because it gives the workforce the knowledge, abilities, and education to complete maintenance tasks effectively and efficiently. Training programs should be developed to address the workforce's needs and bridge maintenance requirements. Regular refresher training may also be necessary to keep the workforce current with advancements in maintenance technology and techniques. Adequate and practical training is crucial for successful bridge maintenance programs (Uddin et al., 2023b). Technology in bridge maintenance refers to the tools, equipment, and techniques used to inspect, analyze, and repair bridges. New technologies like drones, non-destructive testing techniques, and computer software and simulation tools can lead to more accurate assessments, increased efficiency, and improved safety. However, the execution of technology might involve training and expertise, and the cost of these technologies can be substantial (Uddin et al., 2023b). The main reason for problems in bridge inspection in developing countries is the deviation from specified construction procedures and the negligence of the maintenance departments due to several reasons. One of the reasons is budget and lack of funding (Qureshi et al., 2017b).

Due to the dwindling maintenance budget and lack of qualified bridge inspectors, bridgemanagement agencies in Taiwan need to develop cost-effective maintenance and inspection strategies to preserve the safety and functionality of their aging, natural disaster-prone bridges. Although Taiwan is a developed country but still it is facing challenges to improving factors like budget, qualified bridge inspection engineers, etc (Chuang et al., 2023).

Previous studies also indicate that bridge management systems in developed countries are heavily influenced by various factors, including the qualifications of bridge inspection officers (Jeong et al., 2018), inspection data, bridge rating/age, maintenance strategies, standards, funding, training, and technology (Mohamed Mansour et al., 2019). These aspects are essential for evaluating a bridge's overall condition and the condition of its elements. Factors such as bridge technical condition rating, geometric and structural attributes, operating conditions, environmental influences, maintenance history, cost, budget, environmental impacts, and qualitative data play a crucial role in bridge inspection (Ilbeigi & Pawar, 2020; Momtaz et al., 2023; Novak et al., 2018; Outay et al., 2020; Yang & Liu, 2021).. Studying and enhancing these factors is vital to optimize bridge inspection in developing countries.

Implications of Identified Factors on Bridge Inspection Practices and Steps to Improve Them

Table 3 shows the identified factors affecting bridge inspection practices in developing countries. The main factors are budget/funds, resources/advanced machinery/technology, regulations/policies, transparency, previous data, bridge age, and lack of training programs. Based on previous studies every developing country is facing problems in bridge inspection practices because of these factors (Uddin et al., 2023b). Despite these factors, several measures can be taken. If funding is insufficient, consider renting expensive equipment (Inam et al., 2023b). Establish long-term partnerships with vendors for expensive technology to provide support and training (Inam et al., 2023b). Explicit criteria for selecting a team of auditors should be developed, focusing on their track record. Publicly shared reports should include a transparent action plan, and an online portal should be created for transparency in public consultations and legislative processes (Qureshi et al., 2017b; Uddin et al., 2023b). A monitoring team consisting of expert engineers, researchers, policymakers, and industry experts should be established to oversee the creation and review of standards twice a year. Encourage supervisor feedback and suggestions (Uddin et al., 2023b). Use a tool like data

visualization that compiles and creates the report to highlight the performance. The public can access the dashboard to track financial expenditure and progress (Uddin et al., 2023b). Involvement and collaboration with the universities so new graduates can benefit and bring these advancements into practice (Inam et al., 2023b). Enhance Training and Certification Programs.

Furthermore, it is suggested that free online courses be offered so that they can be easily accessible (Uddin et al., 2023b). A database should be developed like the cloud or any other that can be easily accessible. In addition, a digital device should be provided to the inspection teams (Qureshi et al., 2017b). Resources for cutting-edge technology, such as drones, non-destructive testing methods, and computer software, may result in more accurate, more efficient, and safer inspections for both inspectors and the public. However, the workforce/bridge inspectors must obtain the training and knowledge to operate these technologies skillfully (Seo et al., 2018).

CONCLUSION

This study investigated that due to the lack of proper inspection repair, maintenance, and supervision, most of the bridges suffer from a high rate of Deterioration. There are a tremendous load of pending rehabilitation works on bridges in many developing countries(Qureshi et al., 2017b). A bridge failure causes a huge loss of life and assets and interrupts mobility. Inspection of bridges and regular data observations are essential for safe, durable, and smooth bridge operation.(, n.d.-a). Several studies show a significant impact of factors like budget, resources, qualified bridge inspectors, previous data, bridge age/rating, right training, and technology(Amin & Okui, 2015; Uddin et al., 2023b). Improvement of these factors like, budget, resources, transparency, training, and use of technology can improve the bridge inspection in developing countries (Amin & Okui, 2015; Inam et al., 2023b; Uddin et al., 2023b).

RECOMMENDATIONS

Based on the previous studies, it is evident that there are several factors influencing bridge inspection and maintenance in developing countries that need to be improved. To ensure the longevity and safety of the bridges, these factors affecting the bridge inspection practices need to be improved. Below are recommendations for some of the factors mentioned in the discussion part.

Regulations

In a bridge management system, regulations and policies are crucial. This factor has a high impact, according to our findings. The following policies should be considered:

1. Develop and update Comprehensive Standards and Guidelines

Uniform Standards: Create uniform, comprehensive standards and guidelines for bridge inspection and maintenance that all states and municipalities must follow. This ensures consistency in the quality and thoroughness of inspections.

Regular Updates: Regularly update these standards to incorporate the latest technology, materials, and methods

2. Implement Advanced Inspection Technologies (Inam et al., 2023b).

Nondestructive Testing (NDT): Encourage the use of advanced nondestructive testing methods, such as ultrasonic testing, ground-penetrating radar, and thermographic inspections, to detect hidden defects.

Drones and Robotics: Utilize drones and robotic systems for inspections, particularly in hard-to-reach areas, to enhance accuracy and safety.

Structural Health Monitoring (SHM): Deploy SHM systems that use sensors to continuously monitor the health of bridge structures and provide real-time data on their condition.

3. Enhance Training and Certification Programs (Qureshi et al., 2017b)

Inspector Certification: Implement rigorous training and certification programs for bridge inspectors to ensure they are highly qualified and up-to-date with the latest inspection techniques and standards.

Continuous Education: Require ongoing education and training to keep inspectors and maintenance personnel informed about new technologies, materials, and methods.

4. Standardize Data Collection and Management

Centralized Database: Establish a centralized database for all bridge inspection and maintenance records to ensure data is easily accessible, shareable, and analyzable.

Digitalization: Promote the digitalization of inspection and maintenance records to improve data accuracy and reduce paperwork.

5. Enhance Regulatory Oversight and Enforcement

Regular Audits: Conduct regular audits (financial examination) of bridge inspection and maintenance programs to ensure compliance with standards and identify areas for improvement.

Penalties for Non-Compliance: Establish penalties for non-compliance with inspection and maintenance regulations to enforce adherence.

By taking these steps, governments and agencies can significantly improve the regulations and policies.

6. Foster Collaboration and Knowledge Sharing

Public-Private Partnerships: Encourage collaboration between public agencies and private sector experts to leverage their expertise and resources.

Industry Forums: Create forums for knowledge sharing among engineers, inspectors, and maintenance personnel to discuss challenges, solutions, and best practices.

7. Engage in Public Awareness and Education

Public Reporting: Provide transparent reporting to the public about the condition of bridges and the steps being taken to maintain and improve them.

Community Involvement: Engage local communities in bridge safety awareness campaigns to garner public support for maintenance initiatives.

8. Leverage Research and Innovation

Research Funding: Invest in research to develop new materials, methods, and technologies for bridge inspection and maintenance.

Implement pilot programs to test innovative approaches and technologies before wider adoption.

Budget/Funds

Effective bridge maintenance requires adequate funding. The government should set aside enough money to ensure that the equipment, materials, and labor needed for maintenance tasks are all available. Lack of funding could lead to bridge failures or accidents, which can be costly and dangerous if maintenance is neglected (Uddin et al., 2023b).

1. Develop a Strategic Funding Plan

Detailed Budget Proposal: Create a detailed budget proposal outlining specific funding requirements, expected outcomes, and timelines.

Prioritization: Prioritize bridge projects based on risk, usage, and condition to highlight urgent needs.

2. Engage with Policymakers and Stakeholders

Lobbying: Engage in lobbying efforts with local, state, and federal lawmakers to advocate for increased funding. Provide them with data and real-life examples of bridge failures and their consequences.

Stakeholder Meetings: Organize meetings with key stakeholders, including transportation departments, local governments, and industry experts, to build a coalition in support of increased funding.

3. Explore Alternative Funding Sources(Qureshi et al., 2017b).

Public-Private Partnerships (PPPs): Form public-private partnerships to leverage private investment in bridge inspection and maintenance.

Infrastructure Bonds: Advocate for the issuance of infrastructure bonds (by private corporations and by state-owned enterprises) to raise capital specifically for bridge inspection and repair projects.

4. Leverage Federal and State Programs

Federal Grants and Programs: Apply for federal grants and programs aimed at infrastructure improvement, such as those provided by the Federal Highway Administration (FHWA).

State Funding Opportunities: Explore state-level funding opportunities and advocate for the allocation of state transportation funds toward bridge inspection.

5. Measure and Report Outcomes

Performance Metrics: Develop and report on key performance metrics related to bridge conditions and inspection effectiveness.

Transparency: Maintain transparency in how additional funds are used and the outcomes achieved, to build trust and justify future funding requests.

6. Advocate for Long-Term Planning

Infrastructure Planning: Advocate for long-term infrastructure planning that includes sustained funding for bridge inspection and maintenance.

Sustainability Goals: Align bridge inspection funding with broader sustainability and resilience goals to secure more diverse funding sources.

Resources

1. For the Financial Resources

Funding for Equipment: Capital to purchase and maintain advanced inspection equipment and SHM systems (Inam et al., 2023b).

Operational Budgets: Sufficient funds to cover the costs of regular inspections, including personnel salaries, transportation, and logistical support.

Emergency Funds: Allocations for immediate repairs and additional inspections if critical issues are found

The use of cutting-edge technology, such as drones, non-destructive testing methods, and computer software, may result in inspections that are more accurate, more efficient, and safer for both inspectors and the public. However, the workforce/bridge inspectors must obtain the training and knowledge to operate these technologies skillfully (Inam et al., 2023b).

Transparency

- 1. To develop a centralized online portal (Uddin et al., 2023b). Working with IT professionals to create a secure and user-friendly online portal was beneficial. Integrate databases and ensure regular updates of inspection data and public communications strategies. Hire or appoint a communications specialist to manage public reporting and engagement activities and utilize social media and local news outlets to inform the public about available resources.
- 2. To engage with independent auditors, needs identify and contract reputable third-party audit firms to conduct regular reviews, and publicly share audit findings and corrective actions taken.
- 3. For policy advocacy, need collaborate with policymakers to develop regulations that support transparency. Participate in public consultations and legislative processes to advocate for necessary changes.

FUTURE RESEARCH

Further research can be done to exclude the less influential factors from highly influential ones according to the condition of every developing country by conducting surveys and taking validations from experts. It will help to work on the highly influential factors directly and make improving inspection practices easier.

ACKNOWLEDGEMENT

I am grateful to my supervisor, Rully Karim, from the Faculty of Civil Engineering at the University of Indonesia, for his valuable advice and insights. Additionally, I appreciate the assistance the senior university librarian, Fikri Wijaya, S, provided at the University of Indonesia during the consultation process. Their contributions were instrumental in enhancing this study, mainly through applying Prisma for the systematic literature review and database searches.

REFERENCES

Amin, A. F. M. S., & Okui, Y. (2015). Design , construction and maintenance of bridges in Bangladesh : In the past , present and future. *IABSE-JSCE Joint Conference on Advances in Bridges Engineering -III*, 978–984.

Assessment of dead load deflection of bailey bridges in Bangladesh. (n.d.-a).

Assessment of dead load deflection of bailey bridges in Bangladesh. (n.d.-b).

- Avelina, N., Chang, T., & Chi, S. (2022). Comparative Study of Bridge Inspection Practices in Indonesia and Foreign Countries. *IEEE International Conference on Industrial Engineering and Engineering Management*, 2022-Decem, 980–984. https://doi.org/10.1109/IEEM55944.2022.9989924
- Azeem, M., Junaid, M. T., & Saleem, M. A. (2021). Correlated strength enhancement mechanisms in carbon nanotube based geopolymer and OPC binders. *Construction and Building Materials*, 305. https://doi.org/10.1016/j.conbuildmat.2021.124748
- Chuang, Y.-H., Yau, N.-J., & Tabor, J. M. M. (2023). A Big Data Approach for Investigating Bridge Deterioration and Maintenance Strategies in Taiwan. *Sustainability*, 15(2), 1697. https://doi.org/10.3390/su15021697
- Garg, R. K., Chandra, S., & Kumar, A. (2022a). Analysis of bridge failures in India from 1977 to 2017. *Structure and Infrastructure Engineering*, 18(3), 295–312. https://doi.org/10.1080/15732479.2020.1832539
- Garg, R. K., Chandra, S., & Kumar, A. (2022b). Analysis of bridge failures in India from 1977 to 2017. *Structure and Infrastructure Engineering*, 18(3), 295–312. https://doi.org/10.1080/15732479.2020.1832539
- Ilbeigi, M., & Pawar, B. (2020). A probabilistic model for optimal bridge inspection interval. *Infrastructures*, *5*(6). https://doi.org/10.3390/INFRASTRUCTURES5060047
- Inam, H., Islam, N. U., Akram, M. U., & Ullah, F. (2023a). Smart and Automated Infrastructure Management: A Deep Learning Approach for Crack Detection in Bridge Images. *Sustainability (Switzerland)*, 15(3). https://doi.org/10.3390/su15031866
- Inam, H., Islam, N. U., Akram, M. U., & Ullah, F. (2023b). Smart and Automated Infrastructure Management: A Deep Learning Approach for Crack Detection in Bridge Images. *Sustainability (Switzerland)*, 15(3). https://doi.org/10.3390/su15031866
- Jeong, Y., Kim, W. S., Lee, I., & Lee, J. (2018). Bridge inspection practices and bridge management programs in China, Japan, Korea, and U.S. *Journal of Structural Integrity* and Maintenance, 3(2), 126–135. https://doi.org/10.1080/24705314.2018.1461548
- Joshi, S. (2023). Recent Enhancement of Indian Bridge Management System. *Structural Engineering International*, *33*(2), 283–290. https://doi.org/10.1080/10168664.2022.2130126

- Mohamed Mansour, D. M., Moustafa, I. M., Khalil, A. H., & Mahdi, H. A. (2019). An assessment model for identifying maintenance priorities strategy for bridges. *Ain Shams Engineering Journal*, *10*(4), 695–704. https://doi.org/10.1016/j.asej.2019.06.003
- Momtaz, M., Li, T., Harris, D. K., & Lattanzi, D. (2023). Multi-modal deep fusion for bridge condition assessment. In *Journal of Infrastructure Intelligence and Resilience* (Vol. 2, Issue 4). https://doi.org/10.1016/j.iintel.2023.100061
- Novak, D. C., Sullivan, J. L., Reed, J., Gagulic, M., & Van Den Berg, N. (2018). Performancerelated specification and payment modifiers in highway construction projects. *International Journal of Quality and Reliability Management*, 35(10), 2348–2372. https://doi.org/10.1108/IJQRM-03-2018-0061
- Outay, F., Mengash, H. A., & Adnan, M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. *Transportation Research Part A: Policy and Practice*, *141*(July 2020), 116–129. https://doi.org/10.1016/j.tra.2020.09.018
- Puspitasari, S. D., Harahap, S., & Ika Rahmawati, S. (2023a). Bridge inspection implementations and maintenance planning-A comparative analysis of a few distinctive countries. AIP Conference Proceedings, 2482. https://doi.org/10.1063/5.0110943
- Puspitasari, S. D., Harahap, S., & Ika Rahmawati, S. (2023b). Bridge inspection implementations and maintenance planning-A comparative analysis of a few distinctive countries. AIP Conference Proceedings, 2482(April). https://doi.org/10.1063/5.0110943
- Qureshi, L. A., Zia, S., & Sh, M. I. (2017a). Investigation regarding bridge deck deterioration in Pakistan and its remedial measures. *Proceedings of the 13th International Conference* on Inspection, Appraisal, Repairs and Maintenance of Structures, 19(Iii), 65–74.
- Qureshi, L. A., Zia, S., & Sh, M. I. (2017b). Investigation regarding bridge deck deterioration in Pakistan and its remedial measures. *Proceedings of the 13th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures, 19*(Iii), 65–74.
- Seo, J., Duque, L., & Wacker, J. (2018). Drone-enabled bridge inspection methodology and application. Automation in Construction, 94(May), 112–126. https://doi.org/10.1016/j.autcon.2018.06.006
- Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., ... Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. *BMJ (Online)*, 349(January), 1–25. https://doi.org/10.1136/bmj.g7647
- Uddin, M. G., Ali, M., Ali, A., & Zubair, A. (2023a). Bridge maintenance parameters: a case study of railway bridges in Pakistan. *Natural and Applied Sciences International Journal (NASIJ)*, 4(2), 1–21. https://doi.org/10.47264/idea.nasij/4.2.1
- Uddin, M. G., Ali, M., Ali, A., & Zubair, A. (2023b). Bridge maintenance parameters: a case study of railway bridges in Pakistan. *Natural and Applied Sciences International Journal (NASIJ)*, 4(2), 1–21. https://doi.org/10.47264/idea.nasij/4.2.1

Yang, M., & Liu, C. (2021). Possibility of bridge inspection through drive-by vehicles. *Applied Sciences (Switzerland)*, 11(1), 1–28. https://doi.org/10.3390/app11010069