Development of an Environment-Friendly and Solvent-Free Synthetic Route for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones Using La(NO3)3.6H2O as an Efficient Catalyst

Farzaneh Mohamadpour
Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz 37195, Iran, mohamadpour.f.7@gmail.com

Follow this and additional works at: https://scholarhub.ui.ac.id/science

Recommended Citation
DOI: 10.7454/mss.v22i3.9899
Available at: https://scholarhub.ui.ac.id/science/vol22/iss3/6

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub.
Development of an Environment-Friendly and Solvent-Free Synthetic Route for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones Using La(NO3)3.6H2O as an Efficient Catalyst

Cover Page Footnote
We gratefully acknowledge financial support from the Research council of the Young Researchers and Elite Club of Islamic Azad University of Shiraz.

This article is available in Makara Journal of Science: https://scholarhub.ui.ac.id/science/vol22/iss3/6
Development of an Environment-Friendly and Solvent-Free Synthetic Route for the Synthesis of 3,4-Dihydropyrimidin-2-\((1\text{H})\)-Ones/Thiones Using La(\(\text{NO}_3\))\(_3\),\(6\text{H}_2\text{O}\) as an Efficient Catalyst

Farzaneh Mohamadpour
Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz 37195, Iran

E-mail: mohamadpour.f.7@gmail.com

Received December 11, 2017 | Accepted May 15, 2018

Abstract

We present a facile and environmentally friendly procedure for the synthesis of corresponding 3,4-dihydropyrimidin-2-\((1\text{H})\)-ones/thiones derivatives. The synthesis was achieved using a one-pot three-component Biginelli reaction among \(\beta\)-keto esters (methyl or ethyl acetoacetate), aromatic aldehyde (benzaldehyde derivatives), and urea or thiourea in the presence of lanthanum (III) nitrate hexahydrate (La(\(\text{NO}_3\))\(_3\),\(6\text{H}_2\text{O}\)), as a highly efficient catalyst under solvent-free conditions. This protocol has numerous advantages: it is an inexpensive, non-toxic, simple reaction work-up catalyst with a high atom-economy, and shows excellent yields with short reaction times.

Introduction

The synthesis of pyrimidinone derivatives has attracted great attention recently in synthetic organic chemistry due to their therapeutic and pharmacological features. The preparation of 3,4-dihydropyrimidin-2-\((1\text{H})\)-ones/thiones derivatives has drawn wide interest for the various biological properties of these compounds. They have been used as calcium channel blockers, \(\alpha\)-\(\alpha\)-antagonists [1], and as antihypertensive [2], anticancer [3], anti-HIV and other antiviral [4-6], antibiotic [5], antifungal [5], antioxidant [7], and anti-inflammatory [8] agents.

Considering the importance of such compounds, many methods for the synthesis of 3,4-dihydropyrimidin-2-\((1\text{H})\)-ones/thiones derivatives have been reported. Conventional synthesis involves condensation of \(\beta\)-keto esters, aldehyde derivatives, and urea/thiourea using different catalytic systems such as calcium fluoride [9], copper (II) sulfamate [10], baker’s yeast [11], hydrotalcite [12], hexaquaaluminium (III) tetrafluoroborate [13], tetrabutylammonium bromide (TBAB) [14], copper (II) tetrafluoroborate [15], [Btto] [p-TSA] [16], triethyl-ammonium acetate [17], \(p\)-dodecylbenzenesulfonic acid [18], SnCl\(_2\),2\(\text{H}_2\text{O}\) [19], HPAIL [20], [Simp]\(\text{HSO}_3\) [21], Dendrimer-PWA [22], 1-Methyl-2-oxopyrrolidinium perchlorate ion liquid [23], [pyridine\(\text{SO}_3\)H]Cl [24], and phthalic acid [25]. However, most of these synthetic approaches have drawbacks, including difficult work-ups, toxic or expensive catalysts or reagents, low yields, and prolonged reaction times. We considered it necessary to develop a general rapid, high yielding, cost-effective, environmentally benign, and easy synthetic protocol for...
a variety of 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives. In continuation of our work to develop efficient catalytic [26-31] systems to synthesize organic compounds, we employed La(NO₃)₃·6H₂O (lanthanum [III] nitrate hexahydrate) as a catalyst to promote three-component reactions to obtain 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives. Over the past few decades, the use of lanthanum (III) nitrate hexahydrate as an environmentally safe catalyst [32, 33] in organic synthesis has attracted great interest due to its notable advantages such as its non-toxicity, ease of handling, highly efficiency, low cost, high atom economy, and facile reaction profiles. Also, lanthanum (III) nitrate hexahydrate can be successfully used with these types of organic carbon-carbon bonds as a readily available, mild, and environmentally friendly catalyst in organic synthesis. Finally, we report herein an inexpensive, efficient, lanthanum (III) nitrate hexahydrate-catalyzed procedure for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives via a three-component Biginelli [34] reaction under solvent-free conditions. We note that one group of environmental pollutants, organic solvents under reflux conditions, require column chromatography as a purifying agent. In this present work, the organic products were obtained through a simple filter with no need for column chromatographic separation. These notable benefits, together with excellent yields and short reaction times, introduce this catalyst as effective compared with other catalysts presented in previous papers.

Materials and Methods

General. Melting points of all compounds were determined using an Electrothermal 9100. ¹H NMR spectra were recorded on a Bruker DRX-400 Avance instrument using DMSO-d₆ as a solvent. All reagents and solvents were purchased from Merck, Fluka, and other chemical companies, and used without further purification.

General procedure for preparation of 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives (4a-o). A mixture of aldehyde derivatives (1, 1.0 mmol), urea/thiourea (2, 1.5 mmol), and ethyl/methyl acetoacetate (3, 1.0 mmol) was heated under solvent-free conditions at 80 °C for an appropriate time in the presence of lanthanum (III) nitrate hexahydrate (0.06 g). After completion of the reaction by thin layer chromatography, the mixture was cooled to room temperature and cold water was added. The precipitate was separated with filtration and crystallized from ethanol to afford the pure products (4a-o). Spectral data of all products are presented below:

5-**Ethoxycarbonyl -6-methyl-4-(4-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4b):** Yield: 77%; mp 232–234 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.11 (3H, t, J=9.6 Hz, CH₃CH₂), 2.50 (3H, s, CH₃), 3.98 (2H, q, J=9.6 Hz, CH₂O), 5.04 (1H, s, H₆benzylic), 6.68–7.04 (4H, m, H₅), 7.64 and 9.13 (2H, 2s, 2NH), 9.35 (1H, s, OH).

5-**Ethoxycarbonyl -6-methyl-4-(4-methoxystyrene)-3,4-dihydropyrimidin-2(1H)-one (4d):** Yield: 83%; mp 203–205 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.11 (3H, t, J=6.6 Hz, CH₃CH₂), 2.24 (3H, s, CH₃), 3.73 (3H, s, OCH₃), 3.99 (2H, q, J=9.6 Hz, CH₂O), 5.09 (1H, s, H₆benzylic), 6.89 (2H, d, J=8.4Hz, H₈), 7.15 (2H, d, J=8.8Hz, H₈), 7.70 and 9.18 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(4,4-dimethylenephenyl)-3,4-dihydropyrimidin-2(1H)-one (4e):** Yield: 87%; mp 205–208 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.10 (3H, t, J=9.6 Hz, CH₃CH₂), 2.28 (3H, s, CH₃), 3.99 (2H, q, J=9.2 Hz, CH₂O), 5.27 (1H, s, H₆benzylic), 7.50–7.53 (2H, m, H₅), 7.23 (2H, d, J=9.2Hz, H₈), 7.92 and 9.38 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4g):** Yield: 89%; mp 208–209 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.12 (3H, t, J=9.2 Hz, CH₃CH₂), 2.26 (3H, s, CH₃), 2.85 (6H, s, 2CH₃), 3.99 (2H, q, J=9.2 Hz, CH₂O), 5.04 (1H, s, CHN), 6.66 (2H, d, J=11.6 Hz, ArH), 7.42 (2H, d, J=11.6Hz, ArH), 7.61 and 9.11 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4i):** Yield: 91%; mp 216–218 °C; ¹H NMR (400 MHz, DMSO-d₆): 2.38 (3H, s, CH₃), 3.55 (3H, s, OCH₃), 5.28 (1H, s, H₆benzylic), 7.52 (2H, d, J=8.4Hz, H₈), 7.22 (2H, d, J=8.8Hz, H₈), 7.93 and 9.40 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(3-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4j):** Yield: 86%; mp 205–207 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.13 (3H, t, J=9.6 Hz, CH₃CH₂), 2.26 (3H, s, CH₃), 3.74 (3H, s, OCH₃), 4.01 (2H, q, J=9.6 Hz, CH₂O), 5.13 (1H, s, H₆benzylic), 6.78–6.86 (3H, m, H₅), 7.26 (1H, t, J=10.4Hz, H₈), 7.76 and 9.20 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4k):** Yield: 79%; mp 219–221 °C; ¹H NMR (400 MHz, DMSO-d₆): 1.00 (3H, t, J=9.2 Hz, CH₃CH₂), 2.31 (3H, s, CH₃), 4.02 (2H, q, J=9.2 Hz, CH₂O), 5.63 (1H, s, H₆benzylic), 7.25–7.34 (3H, m, H₅), 7.41 (1H, d, J=8.8 Hz, H₈), 7.73 and 9.29 (2H, 2s, 2NH).

5-**Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4l):** Yield: 81%; mp 248–250 °C; ¹H NMR (400 MHz, DMSO-d₆): 2.31 (3H, s, CH₃), 3.46 (3H, s, OCH₃), 5.62 (1H, s, H₆benzylic), 7.28–
7.34 (3H, m, H$_{\text{Ar}}$), 7.42 (1H, d, J=7.2 Hz, H$_{\text{Ar}}$), 7.72 and 9.36 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-(4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4k): Yield: 92%; mp 173–175 °C; 1H NMR (300 MHz, DMSO-d$_6$): 1.11 (3H, t, J=9.6 Hz, CH$_3$CH$_2$), 2.25 (3H, s, CH$_3$), 3.99 (2H, q, J=9.6 Hz, CH$_2$O), 5.14 (1H, s, CHN), 7.13–7.20 (2H, m, ArH), 7.24–7.29 (2H, m, ArH), 7.78 and 9.25 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-(4-methylphenyl)-3,4-dihydropyrimidin-2(1H)-one (4l): Yield: 90%; mp 202–204 °C; 1H NMR (400 MHz, DMSO-d$_6$): 1.11 (3H, t, J=7.2 Hz, CH$_3$CH$_2$), 2.25 (3H, s, CH$_3$), 2.27 (3H, s, CH$_3$), 3.99 (2H, q, J=7.2 Hz, CH$_2$O), 5.11 (1H, s, CHN), 7.13 (4H, ArH), 7.70 and 9.17 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione (4m): Yield: 85%; mp 210–212 °C; 1H NMR (400 MHz, DMSO-d$_6$): 1.10 (3H, t, J=7.2 Hz, CH$_3$CH$_2$), 2.31 (3H, s, CH$_3$), 4.02 (2H, q, J=7.2 Hz, CH$_2$O), 5.19 (1H, s, H$_{\text{benzylic}}$), 7.23 (2H, d, J=7.2 Hz, H$_{\text{Ar}}$), 7.28 (1H, t, J=7.2 Hz, H$_{\text{Ar}}$), 7.36 (2H, t, J=7.2 Hz, H$_{\text{Ar}}$), 9.68 and 10.36 (2H, 2s, 2NH).

5-Ethoxycarbonyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (4n): Yield: 81%; mp 152–154 °C; 1H NMR (300 MHz, DMSO-d$_6$): 1.13 (3H, t, J=9.6 Hz, CH$_3$CH$_2$), 2.29 (3H, s, CH$_3$), 3.74 (3H, s, OCH$_3$), 4.03 (2H, q, J=9.6 Hz, CH$_2$O), 5.15 (1H, s, CHN), 6.77 (2H, m, ArH), 6.87 (1H, m, ArH), 7.28 (1H, t, J=9.6 Hz, ArH), 9.66 and 10.37 (2H, 2s, 2NH).

5-Methoxycarbonyl-6-methyl-4-(4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-thione (4o): Yield: 87%; mp 207–209 °C; 1H NMR (300 MHz, DMSO-d$_6$): 2.31 (3H, s, CH$_3$), 3.57 (3H, s, OCH$_3$), 5.19 (1H, s, H$_{\text{benzylic}}$), 7.17–7.44 (4H, m, H$_{\text{Ar}}$), 9.70 and 10.41 (2H, 2s, 2NH).

Results and Discussion

We have developed a clean, eco-friendly, and simple methodology for one-pot three-component synthesis of 3,4-dihydropyrimidin-2-{(1H)}-ones/thiones derivatives by means of arylaldehyde derivatives (1, 1.0 mmol), urea/thiourea (2, 1.5 mmol), and ethyl/methyl acetooacetate (3, 1.0 mmol) in the presence of a catalytic amount of lanthanum (III) nitrate hexahydrate. Various loadings of catalyst, including 5%, 10%, 15%, and 20% by mass, were screened in our model reaction. By lowering the catalyst loading to 5% by mass, the corresponding product was obtained at a lower yield (Table 1, entry 2). By increasing the amount of catalyst from 5% to 10% and 15% by mass, the reaction time was reduced and the yield of the product increased (Table 1, entries 2–4). So, of the different amounts of catalyst, 15% by mass of lanthanum (III) nitrate hexahydrate proved to be the most efficient quantity for this reaction (Table 1, entry 4). Larger amounts of catalyst did not improve the yields (Table 1, entry 10). With catalyst increased to 20% by mass, there was no significant increase in reaction yield and no change in reaction time (Table 1, entry 10). The results of these comparative experiments are summarized in Table 1. We also examined the influence of temperature on the reaction yield. No product could be detected under room temperature conditions after 360 min (Table 1, entry 5). The reaction was investigated for temperatures running from 40° to 80 °C. Results indicated that when the reaction proceeded using lanthanum (III) nitrate hexahydrate 15% by mass at 40 °C for 75 min, the yield of corresponding product was low (42 %) (Table 1, entry 6). The reaction time was decreased from 75 min to 20 min when the reaction temperature was increased from 40 ° to 80 °C. The high yield of product was obtained at an 80 °C temperature (Table 1, entry 4); yields of product at different temperature are reported in Table 1. The reaction was also carried out at a temperature of 90 °C, but there was no significant change in yield or reaction time (Table 1, entry 9).

We therefore employed the optimized conditions of 15% by mass lanthanum (III) nitrate hexahydrate as a catalyst at 80 °C for the condensation reaction of aryl aldehyde derivatives (1, 1.0 mmol), urea/thiourea (2, 1.5 mmol), and ethyl/methyl acetooacetate (3, 1.0 mmol) into their corresponding 3,4-dihydropyrimidin-2-{(1H)}-ones/thiones derivatives. Encouraged by the results obtained from the above conditions, and to demonstrate the wide applicability and scope of this protocol, we used various aromatic aldehydes, bearing either electron-withdrawing functional groups or electron-donating groups such as Cl, Me, NO$_2$, and OMe-substituted benzaldehydes, for the synthesis of corresponding 3,4-dihydropyrimidin-2-{(1H)}-ones/thiones derivatives. The effects of substituents on the aromatic rings were estimated to be strong in terms of yield under these reaction conditions. Both classes of aromatic aldehydes, those with electron-releasing and those with electron-
withdrawing substituents in their aromatic rings, synthesized the appropriate products with high reaction yields and short reaction times. We also applied urea/thiourea and ethyl/methyl acetoacetate. In each of these substitutions, there was no significant difference in the reaction rate or product yields. The results are summarized in Table 2. The desirable features of this catalyst are its ease of handling, mild and environmentally benign properties, operational simplicity, high reaction yields, and short reaction times.

\[
\begin{align*}
\text{Ar}-\text{CHO} & \quad + \quad \text{OR} - \text{CH}_3 \\
\text{NH}_2 & \quad + \quad \text{NH}_2 \\
\text{La(NO}_3)_3 \cdot \text{H}_2\text{O} (15 \text{ mol %}) & \quad \text{Solvent free, 80 °C} \\
\text{Ar} & \quad \text{CO}_2\text{R} \\
\end{align*}
\]

Figure 1. Synthesis of 3, 4-Dihydropyrimidin-2-(1H)-Ones/Tiones Derivatives

Table 1. Optimization of the Reaction Condition on the Synthesis of 4a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst hexahydrate % by mass [mol %]</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Isolated Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Catalyst free</td>
<td>80</td>
<td>360</td>
<td>No product</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>80</td>
<td>65</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>80</td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>20</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>rt</td>
<td>360</td>
<td>No product</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>40</td>
<td>75</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>60</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>70</td>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>90</td>
<td>20</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>80</td>
<td>20</td>
<td>87</td>
</tr>
</tbody>
</table>

* Reaction conditions: benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), urea (1.5 mmol) and lanthanum (III) nitrate hexahydrate were heated under various temperatures for the appropriate times.

Table 2. Lanthanum (III) Nitrate Hexahydrate Catalyzed Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Tiones Derivatives

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>R</th>
<th>X</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yield % (^a)</th>
<th>mp (°C)</th>
<th>Lit. mp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(_6)H(_5)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4a</td>
<td>20</td>
<td>86</td>
<td>201–202</td>
<td>200–202(^{14})</td>
</tr>
<tr>
<td>2</td>
<td>4-HO-C(_6)H(_5)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4b</td>
<td>30</td>
<td>77</td>
<td>232–234</td>
<td>230–232(^{14})</td>
</tr>
<tr>
<td>3</td>
<td>4-MeO-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4c</td>
<td>25</td>
<td>83</td>
<td>203–205</td>
<td>202–203(^{12})</td>
</tr>
<tr>
<td>4</td>
<td>3-HO-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4d</td>
<td>30</td>
<td>79</td>
<td>165–167</td>
<td>163–166(^{15})</td>
</tr>
<tr>
<td>5</td>
<td>4-(Me(_2))N-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4e</td>
<td>25</td>
<td>87</td>
<td>253–255</td>
<td>255–257(^{12})</td>
</tr>
<tr>
<td>6</td>
<td>4-O(_2)N-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4f</td>
<td>20</td>
<td>89</td>
<td>208–209</td>
<td>207–209(^{13})</td>
</tr>
<tr>
<td>7</td>
<td>4-O(_2)N-C(_6)H(_4)</td>
<td>CH(_3)</td>
<td>O</td>
<td>4g</td>
<td>15</td>
<td>91</td>
<td>216–218</td>
<td>214–216(^{13})</td>
</tr>
<tr>
<td>8</td>
<td>3-MeO-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4h</td>
<td>25</td>
<td>86</td>
<td>205–207</td>
<td>205–206(^{11})</td>
</tr>
<tr>
<td>9</td>
<td>2-Cl-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4i</td>
<td>30</td>
<td>78</td>
<td>219–221</td>
<td>220–223(^{10})</td>
</tr>
<tr>
<td>10</td>
<td>4-F-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4j</td>
<td>25</td>
<td>81</td>
<td>248–250</td>
<td>248–252(^{10})</td>
</tr>
<tr>
<td>11</td>
<td>4-Cl-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4k</td>
<td>15</td>
<td>92</td>
<td>173–175</td>
<td>174–176(^{14})</td>
</tr>
<tr>
<td>12</td>
<td>4-MeO-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>O</td>
<td>4l</td>
<td>15</td>
<td>90</td>
<td>202–204</td>
<td>204–205(^{11})</td>
</tr>
<tr>
<td>13</td>
<td>C(_6)H(_5)</td>
<td>C(_2)H(_6)</td>
<td>S</td>
<td>4m</td>
<td>20</td>
<td>85</td>
<td>210–212</td>
<td>208–210(^{13})</td>
</tr>
<tr>
<td>14</td>
<td>4-MeO-C(_6)H(_4)</td>
<td>C(_2)H(_6)</td>
<td>S</td>
<td>4n</td>
<td>25</td>
<td>81</td>
<td>152–154</td>
<td>150–152(^{13})</td>
</tr>
<tr>
<td>15</td>
<td>4-F-C(_6)H(_4)</td>
<td>CH(_3)</td>
<td>S</td>
<td>4o</td>
<td>15</td>
<td>87</td>
<td>207–209</td>
<td>208–210(^{14})</td>
</tr>
</tbody>
</table>

* Isolated yield.
Although different mechanistic pathways have been previously proposed [12, 15, 19], we believe that the reaction may proceed through an initial N-acylimine B formed from aldehyde 3 and urea 2 (Figure 2). The coordination of the lone-pair of the nitrogen atom in the N-acylimine B with the lanthanum (III) nitrate hexahydrate could lead to the in-situ formation of an N-carbamoyliminium ion C, which is sufficiently electrophilic to react with the enol form of ethyl acetoacetate A affording the open chain intermediate D.

Further intramolecular cyclization, with loss of H2O, produced the 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives 4.

A comparison of catalytic ability of some of catalysts reported in the literature for synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives is shown in Table 3. Our study revealed that lanthanum (III) nitrate hexahydrate has demonstrated potential to be an alternative eco-friendly and cost-effective catalyst for the Biginelli reaction. In addition, the use of solvent-free conditions with excellent yields and short times in the reactions with both urea and thiourea were the notable advantages of this present methodology.

![Proposed Mechanistic Route for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Tiones](image)

Table 3. Comparison of Catalytic Ability of Some Catalysts Reported in the Literature for Synthesis of 4a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conditions</th>
<th>Time/Yield (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bakers' yeast</td>
<td>Room temperature</td>
<td>24 h/84</td>
<td>[11]</td>
</tr>
<tr>
<td>2</td>
<td>Hydrotalcite</td>
<td>Solvent-free, 80 °C</td>
<td>35 min/84</td>
<td>[12]</td>
</tr>
<tr>
<td>3</td>
<td>Al(H2O)63</td>
<td>MeCN, Reflux</td>
<td>20 h/81</td>
<td>[13]</td>
</tr>
<tr>
<td>4</td>
<td>Cu(BF4)2.xH2O</td>
<td>Room temperature</td>
<td>30 min/90</td>
<td>[15]</td>
</tr>
<tr>
<td>5</td>
<td>[Btt][p-TSA]</td>
<td>Solvent-free, 90 °C</td>
<td>30 min/96</td>
<td>[16]</td>
</tr>
<tr>
<td>6</td>
<td>Triethylammonium acetate</td>
<td>Solvent-free, 70 °C</td>
<td>45 min/90</td>
<td>[17]</td>
</tr>
<tr>
<td>7</td>
<td>p-dodecylbenzenesulfonic acid</td>
<td>Solvent-free, 80 °C</td>
<td>3 h/94</td>
<td>[18]</td>
</tr>
<tr>
<td>8</td>
<td>Lanthanum (III) nitrate hexahydrate</td>
<td>Solvent-free, 80 °C</td>
<td>20 min/86</td>
<td>This work</td>
</tr>
</tbody>
</table>

*aBased on reaction of benzaldehyde, ethyl acetoacetate and urea.
Conclusions

We have introduced lanthanum (III) nitrate hexahydrate as an economical and highly efficient catalyst for facile one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via three-component reactions of aryl aldehydes, urea/thiourea and ethyl/methyl acetacetate under solvent-free conditions. The promising features that have distinguished this approach from other reported methods of this synthesis include its high catalytic ability, low cost, ready availability, and simple reaction work-up, making this methodology more economical and industrially relevant. Additional advantages of this protocol include excellent yields and short reaction times under solvent-free conditions.

Acknowledgments

We gratefully acknowledge financial support from the Research council of the Young Researchers and Elite Club of Islamic Azad University of Shiraz.

References

Mohamadpour, F., Maghsoudlou, M.T., Heydari, R., Lashkari, M. 2017. Tartaric acid: A naturally
green and efficient di-functional Bronsted acid catalyst for the one-pot four-component synthesis of

Mohamadpour, F., Maghsoudlou, M.T., Heydari, R., Lashkari, M. 2016. Oxalic acid dihydride cata-
lyzed synthesis of 3,4-dihydroxyiminid-2-(1H)-one derivatives under thermal and solvent-free con-

Mohamadpour, F., Maghsoudlou, M.T., Heydari, R., Lashkari, M. 2016. Copper (II) acetate monohy-
drate: an efficient and ecofriendly catalyst for the one-pot multi-component synthesis of biologically
active spiropropans and 1Hpyrazol[1,2-b] phthalazine-5,10-dione derivatives under solvent-free con-

Maghsoudlou, M.T., Heydari, R., Lashkari, M., Mohamadpour, F. 2017. Clean and one-pot synthe-
sis of 3, 4-dihydroxyiminid-2-(1H)-one/tiones derivatives using maleic acid as an efficient and envi-
ronmentally benign nature di-functional Bronsted acid catalyst under solvent-free conditions. Indian.

Lashkari, M., Heydari, R., Mohamadpour, F. 2016. A facile approach for one-pot synthesis of 1H-

Mousavi, M.R., Aboonajmi, J., Maghsoudlou, M.T., Hazeri, N., Habibi-khorassani, S.M., Safarzaei, M.
2013. La(NO₃)₃.6H₂O catalyzed one-pot highly diasteroselective synthesis of functionalized

Pandule, S.S., Shisodia, S.U., Patil, M.R., Chabukswar, V.V. 2015. An efficient and regio-
selective bromination of aromatic amines and phenols using lanthanum (iii) nitrate hexahydrate as

413.