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Abstract. Landslide hazards can be caused by several factors such as lithology, land cover, rainfall, 

slope, curvature, aspect, distance from river and road. In this study, a landslide susceptibility 

mapping was carried out using a Geographical Information System (GIS) in Kabandungan District 

and Salak Geothermal Field, West Java. The data used consisted of an inventory of points and 

landslide areas totalling 247 using a visual collection of Google Earth imagery. The Weight of 

Evidence (WoE) model is used to select parameters that cause landslides and to produce landslide 

vulnerability maps. The results of modeling indicate a positive relationship between selective 

factors for the occurrence of landslides, with Area Under Curve value of 0.89359; 0.76395; 

0.75277; 0.73280 and 0.69093 respectively. Landslide susceptibility maps are made by adding up 

the WoE values for all the most influential parameters. Higher total WoE value is indicating a 

higher probability of landslide. Landslide susceptibility maps can be used as an effort to prevent 

potential hazards or mitigate landslides. In addition, this map can also be used furtherly for spatial 

planning and engineering activities. 

Keywords: landslide susceptibility, causative factors, Kabandungan, Salak Geothermal Field, 

Weight of Evidence, Area Under Curve 

 

1. Introduction 

Landslides have become geological phenomena that have resulted in significant losses, ranging from 

loss of human lives, property, ecosystems, and damage to infrastructure. West Java region is known as 

the region with the highest occurrences of landslides compared to other regions in Indonesia. Volcanic 

weathered material, steep contours, and high rainfall are some of the main components causing and 

triggering a landslide in West Java. From 2012 to 2019, 571 landslides have occurred in various regions 

in West Java (Center for Volcanology & Geological Disaster Mitigation, 2019). 

Landslide incident is inseparable from the geological order and denudation process that continues 

to this day. In addition to natural factors, landslides can be affected by human activity changes in land 

use and construction activities in areas with slopes without regard to environmental aspects. Mitigation 

is an activity designed to reduce risk and potential disasters. Mitigation can take the form of structural 

and non-structural development in disaster-prone areas. Landslide susceptibility map is one of the 

spatial information that is useful as a support for structural and non-structural mitigation activities. The 

map is one of the important factors in assessing the feasibility of an area for development. The analysis 

is made by utilizing a landslide inventory map and causative map of landslides that originated from the 

Geospatial Information Agency (Geospatial Information Agency, 2019). 

mailto:misbahudin@universitaspertamina.ac.id
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Landslide susceptibility identification is the most effective and economical way to provide basic 

data in spatial planning, land use, adaptation, and disaster mitigation (Zhou et al., 2016). Even though 

the time and location of landslide events are difficult to predict, but an evaluation of the potential of an 

area for landslides can be carried out. A large number of landslide analyses have been carried out and 

developed with various remote sensing-based methods and Geographic Information Systems (GIS) in 

various places (van Westen, 1993; Guzzetti, et al., 2005; Lee & Pradhan, 2006; Dahal, et al., 2008; 

Yilmaz, 2010; Yalcin, et al., 2011; Abrauw, 2017). In this case, the Weight of Evidence (WoE) method 

is widely used for mapping landslide susceptibility (Mărgărint et al., 2013; Heckmann et al., 2014).  

WoE method is based on information obtained from the relationship between the parameters of the 

landslide as a calculation parameter and the landslide event data, so that it can be predicted areas that 

are prone to landslides, taking into account the events before (prior) and after (posterior) (Barbieri & 

Cambuli, 2009). WoE method has advantages because it can assess the effect of different classes of 

each variable. 

This study aims to visually present the level of vulnerability of an area to potential landslide hazards 

through mapping of landslide susceptibility zones. The researcher used and calculated different 

causative factors to produce landslide susceptibility maps (Neuhäuser et al., 2011). There are many 

parameters that need to be considered for analyzing landslides events. However, nothing, in general, 

explains the criteria for selecting parameters for making maps (Ayalew et al., 2005; in Che et al., 2011). 

In fact, each parameter in a different region will have a different effect on the occurrence of existing 

landslides. According to Ayalew et al. (2005); in Che et al. (2011), to determine the parameters that 

cause the formation of landslides using a statistical approach based on GIS, these parameters must meet 

the requirements including, can be operated, represent the whole area, not excessive and can be 

calculated. Pamela et al., (2018) use eight selective causative factors including slope degree, slope 

aspect, lithology, elevation, rainfall, distance to lineament, peak ground acceleration and flow direction.  

The consideration based on area conditions in Aceh, Indonesia lie at earthquake-prone zone both 

active fault zone and source of the earthquake. No considerable earthquake zone is present in this 

research area, so the parameters used for evaluating landslide susceptibility are also quite different. 

Some parameters, such as peak ground acceleration and distance to lineament, are not used in this 

research. As a substitute for these factors, proximity to the road and land use become parameters that 

may considerably influence landslides events. 

 

2. Methodology 

2.1.  Study Area 

Figure 1. Study area (Google Maps, 2019) 

In 2019, several regions in West Java experienced landslides. One of the areas is in Kabandungan 

District, Sukabumi Regency, West Java. Kabandungan District has records of landslide events that 

occurred in some villages, such as Cibeureum, Cianaga, and Cipeuteuy. Landslides take place in 

LOCATION MAP OF RESEARCH AREA, KABANDUNGAN 

AND SURROUNDING, WEST JAVA 
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February, April & May 2019. Kabandungan also borders Salak Geothermal Field. The field has a 

capacity of 377 MW (Directorate General of New and Renewable Energy and Energy Conservation, 

2017). The research area is in Kabandungan and Parakan Salak District, Sukabumi Regency, West Java 

where located at 6°40'30" - 6°46'00" S and 106°38'30" - 106°45'00" E (Figure 1).  

Figure 2 shows that research area composed of Older Volcanic Rocks including Unconsolidated 

Volcanic Rock (Qvu) that consists of breccias and lava flows, especially andesite; Volcanic Breccias 

(Qvb) that consists of andesite-basal breccias, local agglomerates, weathered; Volcanic Lava (Qvl) that 

consists of lava flow, in the Bogor area basalt with labradorite, pyroxene, and hornblende, in the Port 

of Ratu area, andesite and oligoclase-andesine and abundance of hornblende; Tuff (Qvt) that consists 

of pumiceous tuff; Gunung Pangrango Volcanics including Younger Deposits (Qvpy), andesitic lahar; 

Older Deposits (Qvpo), lahar and lava, andesitic basalt with oligoclase-andesine labradorite, olivine, 

pyroxene, and hornblende; Surficial Deposits including Alluvium Fans (Qav) that consist of mainly silt, 

sandstone, gravel and boulders from Quaternary volcanic rocks, redeposited as alluvial fans; Bogor 

Zone including Tuff and Breccia (Tmtb) that consist of pumiceous tuff, tuffaceous breccia (andesitic), 

tuff sandstone, tuffaceous clay with silicified wood and plant remains, sandstone is cross bedded; The 

Bojongmanik Formation (Tmb) consists of lithology which includes sandstones, pumice tuffs, marl 

with molluscs, limestone, claystone with bitumen clay and intercalation of lignite and fragment resins. 

The thickness of this formation is 550 m. Fossils in clay are planktonic indicating a Miocene age; 

Volcanic Rocks including Endut-Prabakti Lava (Qvep) that consists of andesite hornblende, containing 

oligoclase of andesine, hypersthene, and hornblende; Gunung Salak Volcanics including lava flow, 

basaltic andesite with pyroxene (augite) (Qvsl); lahar, tuffaceous breccia, and lapilli, basaltic andesite 

in composition, mostly strongly weathered (Qvsb); sandy pumiceous tuff. In the vicinity Cicurug, 

pumiceous tuff, locally called trass (Qvst).  

 

Figure 2. Geological map of research area (Effendi et al., 1998). 
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2.2. Causative Factors   

Data on landslide events and causative factors are the main data needed in the analysis of landslide 

susceptibility maps. The inventory identified 247 landslide events from visual observation of Google 

Earth imagery. Information taken from the event data is the location coordinates (points) with an 

average area of events ± 15x15 m (225 m2). The number of landslides events is then used to test the 

validity of the parameters influencing the landslides, hereinafter referred to as landslide training. 

The key to making susceptibility maps is assuming that current and previous landslides events will 

also occur in the future in similar areas (Che et al., 2011). In other words, the existing landslides 

inventory can be used to predict the susceptibility of an area in the future landslides. Eight parameters 

were chosen which are estimated to have an influence on the occurrence of landslides including rock 

type (lithology), land use, slope gradient, slope direction (aspect), slope curvature, distance from the 

river, distance from road and rainfall. Slope gradient, aspect, and curvature are obtained from a Digital 

Elevation Model (DEM) map with a resolution of 30 m (Geospatial Information Agency, 2019). The 

slope gradient is one of the main parameters of geomorphology, represent elevation points which 

influences on the slide susceptibility, since the driving force of the landslides, is the gravity (Torizin, 

2011). The slope is typically considered to be one of the influential factors for landslide modeling 

because it controls the shear forces acting on hill slopes (Bui et al., 2011; Dou et al., 2009; Nolasco-

Javier et al., 2015). Slope cuts can change the angle of slope and will reduce the resistance of the 

landslide. Slope direction or common mentioned as aspect, that relates to sunlight exposure and drying 

winds control the soil moisture were also considered an important factor in landslide studies (Magliulo 

et al., 2008).  

Aspect, defined as the maximum slope of the terrain surface, played a fundamental role in slope 

stability due to variance in temperature, vegetation, and directional peak ground acceleration. For 

example, in the northern hemisphere, south-facing slopes were more open to sunshine and warm wind 

than north-facing ones (Zhou et al., 2016). Curvature shows the surface shape of an area, divided into 

three classes, namely positive curvature (convex), negative curvature (concave) and zero curvature (flat) 

(Kartiko, 2009). Differences in the level of curvature of an area can affect slope moisture, the ability to 

maintain slope saturation and the susceptibility of erosion to slope movement. 

Lithology is considered one of the most influential factors in landslide susceptibility mapping 

because of its influence on the geo-mechanical characteristics of a terrain (Costanzo et al., 2012). 

Lithology represents different geological units or rock formation (Torizin, 2011). Each unit affects the 

stability of the slope differently in the level of vulnerability. Lithology plays an important influence in 

the case of landslides because rock units have certain characteristics such as compactness, composition, 

and structure. This situation then results in variations in resistance to slope movement (Carrara et al., 

1991). 

Lithology affects the strength and permeability associated with the slope of the gradient. The 

lithology map is obtained from Effendi et al. (1998) in the TIFF image format. Digitization needs to be 

done to obtain lithological boundaries in polygon format. Rainfall becomes one of the parameters in 

landslides occurrence because it raises the pore water pressure in a slope, causing the slope resisting 

force to decrease. 

Land use map and road obtained from BIG polygon type. The occurrence of landslides is a natural 

phenomenon that will occur whether there is human activity or not. However, land use due to human 

activities can accelerate and have a large role in the formation of landslides events, such as land use and 

development in sloped areas that do not follow the rules of environmental sustainability. 

Distance from road or proximity to the road is estimated to have a significant effect due to the 

construction of the road usually carried out the process of excavation and addition of material on the 

slopes in several places. This condition can trigger the occurrence of landslides. Distance from river 

parameter means the closer distance to the river is estimated to have a significant effect on the lower 

slope, which can cause landslide (Che et al., 2011). Rainfall becomes one of the parameters in landslides 

occurrence because it raises the pore water pressure in a slope, causing the slope resisting force to 

decrease. All maps were converted to raster by using the functions in ArcGIS and have a projection 

system of UTM Zone 48S. Each parameter data must have the same coverage, resolution, and number 

of pixels. 
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2.3. Weight of Evidence (WoE) 

Weight of Evidence (WoE) is included in the bivariate statistical method, which is a method based on 

the Bayes probability framework that is displayed in a series of GIS environments (Mezughi et al., 

2011). WoE model is a quantitative technique that is driven by data, using some combinations of data 

to produce maps of weighted data, both continuous and categorized based on prior (initial) and posterior 

(after) probabilities (Bonham-Carter, 1994; van Westen et al., 2003; Poli & Sterlacchini, 2007). WoE 

method allows for the incorporation of uncertainties in the susceptibility model (type, quality, and 

calculation of each data) and explicitly considers expert knowledge into the process (Chung et al., 

2003). WoE calculates the relationship between selective causative factor classes with the distribution 

of landslides in the form of positive (W+) and negative weights (W-). Apart from the calculation of W+ 

and W-, the contrast of weight (C’) is added to define how significant the overall spatial association 

between a selective causative factor and landslide distribution. 

 

(𝑊+)𝑖  = 𝐿𝑛(
(
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𝑛
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)

)   (2) 

𝐶𝑖 = (𝑊+)𝑖 − (𝑊−)𝑖     (3) 

𝑊𝑜𝐸𝑖 = (𝑊+)𝑖 + ∑ (𝑊−)𝑎
𝑛
𝑎=0 − (𝑊−)𝑖           (4) 

 

with, 

W+i = Positive probability of landslide for i-class 

LsFi = Corrected landslide events for i-class 

Ai = Area, number of pixels of i-class 

Ci = Constant for simplifying the equation 

WoEi  = Weight of Evidence for i-class 

𝐴𝑈𝐶𝑖 =  
(%𝐿𝑠𝑖−1+%𝐿𝑠𝑖)∗(%𝐴𝑖−%𝐴𝑖−1)

2
    (5) 

𝐴𝑈𝐶𝑘𝑢𝑚 𝑖 =  ∑ 𝐴𝑈𝐶𝑎
𝑖
𝑎=0      (6) 

with, 

AUCi  = Area Under Curve for i-class 

AUCkum  = Accumulation of AUC 

Lsi  = Number of occurrences of landslides for i-class  

Ai  = Area, number of pixels of i-class   

3. Results and Discussion 

All of these parameters have their class values (Figure 3). The following explanation of the eight 

parameters selected is as follows. Slope angle values in the research area ranged from 0°-89° and were 

divided into 20 classes with intervals magnification of 4.5°. Aspect shows the direction of slope divided 

into ten sections with class intervals of 45° to north, northeast, east, southeast, south, southwest, west, 

northwest, flat, and north. Rainfall divided into nine classes, per 120 mm/month interval. 

The lithology condition in research area composed of 13 rock type group as refer to Effendi et al. 

(1998) including Unconsolidated Volcanic Rock (Qvu); Volcanic Breccias (Qvb); Volcanic Lava (Qvl); 

Tuff (Qvt); Younger Deposits (Qvpy); Older Deposits (Qvpo); Alluvium Fans (Qav); Tuff and Breccia 

(Tmtb); Bojongmanik Formation (Tmb); Endut-Prabakti Lava (Qvep); lava flow, basaltic andesite with 

pyroxene (augite) (Qvsl); lahar, tuffaceous breccia, and lapilli, basaltic andesite in composition, mostly 
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strongly weathered (Qvsb); sandy pumiceous tuff. In the vicinity of Cicurug, pumiceous tuff, locally 

called trass (Qvst). Distance from the road is made into nine classes with 50 m class interval, and for 

distance >400 m is made into one class with the assumption that there is no influence from the existence 

of the road (Che et al., 2011). Distance from the river is divided into seven classes at intervals of 50 m 

per class, with pixels having a distance from the river >300 m made into a single class assuming the 

influence of the river can be ignored (Che et al., 2011). Curvature map divided into three classes that 

consist of positive curvature (convex), negative curvature (concave) and zero curvature (flat). 

Meanwhile, land use in the research area consists of 11 groups including primary dryland forest, 

secondary dryland forest, industrial forest, plantation, settlement, dryland farming, bush- mixed 

farmland, rice fields, shrubs, bare land, and water body. 
 

  
 

 

 

 
 

 

 

 
 

 

 

 
Figure 3. Causative factor induced landslide: aspect, slope, rainfall, lithology, distance from road, 

distance from river, curvature and land use 
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By WoE calculation in Table 1, it can be found some positive relationship between each of the 

parameters and landslide events. The strongest positive relation between landslides and lithology can 

be found in volcanic breccia and lava. Volcanic breccia (Qvb) consist of breccia and andesitic-basaltic, 

volcanic lava (Qvl) consist of a lava flow, basaltic with labradorite, pyroxene, and hornblende. The 

weighting of the slope gradient classes showed that the slope gradient of 32 - 36° is the highest 

susceptible to landslides.  

For aspects, landslide events have many points in a southeast direction. In parameter of proximity 

to the river, strong positive relationships can be found at 300 m away from the main river. In another 

side, at 300-400 m distance from the road, it has high susceptibility to landslides. The relation between 

landslides and rainfall has positive relation for 328-337 mm/month precipitation. Type of secondary 

dry forest becomes the highest susceptibility to landslides in the land-use factors. Last, the strongest 

positive relation between landslides and curvature can be found in positive or convex class. 

Table 1. WoE and AUC value for landslide causative parameters 

 

WoE 

value 

 

Area 

(pixel) 

 
Cum. area 

 

Cum. area 

(%) 

 

Landslide 

number 

Cum. 

landslide 

number 

Cum. 

Landslide 

number 
(%) 

 

AUC 

value 

Slope        

3167 144522 144522 0.01019 48 48 0.19512 0.00099 

2909 45595 190117 0.01340 14 62 0.25203 0.00072 

2447 377050 567167 0.03998 59 121 0.49187 0.00989 

2117 13846 581013 0.04096 2 123 0.50000 0.00048 

1615 699275 1280288 0.09025 51 174 0.70732 0.02976 

459 1070334 2350622 0.16571 28 202 0.82114 0.05766 

-345 1508450 3859072 0.27204 19 221 0.89837 0.09142 

-1384 2079345 5938417 0.41863 10 231 0.93902 0.13467 

-1803 2703160 8641577 0.60919 9 240 0.97561 0.18242 

-2683 2255498 10897075 0.76819 3 243 0.98780 0.15609 

-4086 3252270 14149345 0.99745 1 244 0.99187 0.22694 

-5508 10797 14160142 0.99821 2 246 1.00000 0.00076 

-5510 25330 14185472 1.00000 0 246 1.00000 0.00179 

      AUC total 0.89359 

Aspect        

1421 181799 144522 0.06141 61 61 0.24797 0.00761 

1197 148425 292947 0.12448 43 104 0.42276 0.02115 

903 170143 463090 0.19678 38 142 0.57724 0.03615 

346 213221 676311 0.28739 29 171 0.69512 0.05764 

145 140452 816763 0.34707 16 187 0.76016 0.04343 

57 200276 1017039 0.43217 21 208 0.84553 0.06832 

-39 104632 1121671 0.47663 10 218 0.88618 0.03850 

-44 157408 1279079 0.54352 15 233 0.94715 0.06131 

-2436 962918 2241997 0.95269 13 246 1.00000 0.39836 

-5487 74049 2316046 0.98416 0 246 1.00000 0.03147 

       0.76395 

Rainfall        

1147 3279 3279 0.04713 22 22 0.08980 0.00212 

663 5268 8547 0.12285 39 61 0.24898 0.01283 

573 5068 13615 0.19569 40 101 0.41224 0.02408 

444 1091 14706 0.21137 49 150 0.61224 0.00803 

55 9353 24059 0.34580 38 188 0.76735 0.09273 

-374 4616 28675 0.41215 19 207 0.84490 0.05348 

-511 7343 36018 0.51769 10 217 0.88571 0.09133 
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WoE 

value 

 

Area 

(pixel) 

 
Cum. area 

 

Cum. area 

(%) 

 

Landslide 

number 

Cum. 

landslide 

number 

Cum. 

Landslide 

number 
(%) 

 

AUC 

value 

-544 9534 45552 0.65472 22 239 0.97551 0.12752 

-788 8923 54475 0.78297 1 240 0.97959 0.12537 

-1813 6807 61282 0.88080 3 243 0.99184 0.09644 

-2259 6019 67301 0.96732 2 245 1.00000 0.08616 

-5567 2274 69575 1.00000 0 245 1.00000 0.03268 

       0.75277 

Lithology        

5036 143 143 0.00209 3 3 0.01224 0.00001 

2102 101 244 0.00356 0 3 0.01224 0.00002 

1514 4943 5187 0.07567 66 69 0.28163 0.01060 

719 10195 15382 0.22440 46 115 0.46939 0.05585 

156 10861 26243 0.38285 46 161 0.65714 0.08925 

109 239 26482 0.38634 1 162 0.66122 0.00230 

-450 2070 28552 0.41654 5 167 0.68163 0.02028 

-1194 1740 30292 0.44192 2 169 0.68980 0.01741 

-1464 4424 34716 0.50646 67 236 0.96327 0.05334 

-2656 3770 38486 0.56146 1 237 0.96735 0.05309 

-2843 8521 47007 0.68577 2 239 0.97551 0.12076 

-3631 17017 64024 0.93403 4 243 0.99184 0.24420 

-5626 4522 68546 1.00000 2 245 1.00000 0.06570 

       0.73281 

Distance from road       

1015 29886 29886 0.43645 196 196 0.80000 0.17458 

-1358 5599 35485 0.51822 10 206 0.84082 0.06708 

-1444 7764 43249 0.63160 13 219 0.89388 0.09834 

-1757 10907 54156 0.79089 14 233 0.95102 0.14693 

-2247 14319 68475 1.00000 12 245 1.00000 0.20399 

       0.69093 

Landuse        

2210 213 213 0.00433 7 7 0.03167 0.00007 

827 14080 14293 0.29049 119 126 0.57014 0.08611 

702 5767 20060 0.40770 43 169 0.76471 0.07823 

-663 526 20586 0.41839 1 170 0.76923 0.00820 

-671 24379 44965 0.91387 46 216 0.97738 0.43270 

-1136 4238 49203 1.00000 5 221 1.00000 0.08516 

       0.69046 

Distance from river       

1184 1011 1011 0.01520 8 8 0.04145 0.00031 

540 942 1953 0.02936 4 12 0.06218 0.00073 

180 1006 2959 0.04448 3 15 0.07772 0.00106 

-36 60426 63385 0.95276 172 187 0.96891 0.47532 

-54 1269 64654 0.97183 3 190 0.98446 0.01863 

-124 908 65562 0.98548 2 192 0.99482 0.01351 

-879 966 66528 1.00000 1 193 1.00000 0.01448 

       0.52404 

Curvature       

145 697933 144522 0.09707 127 127 0.51626 0.02506 

-45 714476 858998 0.57694 118 245 0.99593 0.36283 

-2583 76466 935464 0.62830 1 246 1.00000 0.05125 

       0.43914 

Area under curve (AUC) of success rate of slope degree, slope aspect, rainfall, lithology, distance from 

road, distance from river, curvature and land use are 0,89359; 0,76395; 0,75277; 0,73280; 0,69093; 

0,52404; 0,43914 and 0,23467, respectively, shown in Table 1 and Figure 4. AUC value close to 1; the 

Table 1. (Continued) 
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better quality of the model is (Arifianti  & Agustin, 2017). It should be noted that not all classes in each 

parameter can display their AUC value. This is related to the WoE value of the class that meets the 

criteria with the landslide training data. The AUC value, which is intended to assess the influence of 

the parameters of the landslide event is the accumulation of the AUC value of each class that meets the 

criteria for a parameter. 

 

 
 

 

 
 

 
 

 

 

Figure 4. Area Under Curve (AUC) value for slope, aspect, rainfall, lithology, distance from the 

road, distance from the road, curvature and land use. The X-axis represents the total area in %, and Y-

axis represents the landslide area in % 

According to the validation results of AUC evaluation, the slope gradient has the highest factor 

controlling the landslide in this area, followed by aspects, rainfall, and lithology in sequence. Overall, 

the AUC of the effective factors in the study area showed how good the quality between the causative 

factors and landslides distribution data. WoE modeling, which was applied to the five selective 

causative factors, were then resulting in a total WoE of landslide susceptibility (Figure 5). Results of 
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the WoE values that have been added are given a gradation of green-red, where red has a high WoE 

value, which indicates a high tendency for landslides. 

 

Figure 5. Landslide susceptibility map in the research area that represented by total WoE value. 

Comparison with related research in a different geological background, Pamela et al., (2018) in the 

research area of Takengon, Aceh concluded that the slope gradient is also the most dominant causative 

factor that affects the stability of a slope. Other parameters that most influenced landslides in their 

research area are aspects, peak ground acceleration, and elevation. This result differs slightly where 

there are differences in influence on rainfall and lithology factors after the slope gradient. This is 

understandable because conditions are different in tectonic setting background. Research area where 

located in the Salak region, West Java is an area that has high rainfall.  

Precipitation becomes the dominant parameter in its effect on the landslide. Meanwhile, in Aceh, 

peak ground acceleration plays an important role in landslides. Arifianti et al., (2016) states that Aceh 

has earthquake-induced landslides occurred in Takengon, Central Aceh district. Takengon is located at 

Sumatra Island, an active fault zone, the source of active earthquakes. The effects of slope movements 

of earthquakes in Sumatra were associated with numerous landslide disasters. It can be considerably 

stated that topographic related factor that is slope gradient and aspect are two factors most contributing 

to landslides. The lithology parameter in these two research areas does not play a big role compared to 

the two previous factors. This may lead to the conclusion that each area had different local conditions 

compared to other locations. The difference in local conditions that will affect the incidence of 

landslides is caused by any factor. 

4. Conclusion 

The parameters affect landslides events in research area consisted of five parameters that are slope, 

aspect, rainfall, lithology, and distance from the road. This is indicated by the AUC value, which meets 

the criteria. These parameters will be different and adjust to the local conditions of each area. It might 

be possible to consider that the slope can be a factor that most often influences the occurrence of 

landslides. Landslide susceptibility maps are made by combining the weighting of the five parameters 

in the form of a WoE total value map. The greater value of WoE, the possibility of landslides will be 

higher. Current landslide susceptibility maps can be used for the prevention and mitigation of initial 

landslide hazards and appropriate planning for land use and infrastructure development. Due to the 

dynamic nature of rainfall, rapid urbanization, deforestation, and anthropogenic activities, landslide 



78 

 

Misbahudin (2020). Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments), 4 (2), 68-79 

susceptibility map presented can change. Therefore, maps must be verified and modified on time by 

adding other landslide conditioning factors in the analysis.  
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