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Abstract

The Keunekai waters around Weh Island, Indonesia, have become a prone coastal area because of degradation from
climate anomalies and anthropogenic pressure. The high level of coral mortality caused by mass bleaching and fish
bombing several years ago may have led to the deterioration of the water conditions and the disruption of the biogeo-
chemical cycle, resulting in potential nutrient enrichment and algae blooms (eutrophication). This study aimed to de-
termine the influence of nutrient ratios on phytoplankton abundance and monitor the existing water conditions around
Keunekai. Spectrophotometry analysis was used to determine the concentrations of the nutrients, and the Sedgewick-
Rafter counting method was used to identify the species and abundance of the phytoplankton. A large variation in N
content (ranging from 1.1 to 1.6 mg N/L) and, particularly, P content (ranging from 0.02 to 0.18 mg P/L) most likely
reflected differences in the supply ratios of N and P, rather than differences in absolute N and P availability. Three taxa
of phytoplankton and their relative abundance were identified in the study area: Bacillariophyceae (diatom) (72%),
Cyanophyceae (3%), and Dinoflagellate (25%). It was found that P-limitation mostly controls potential algae blooms,
which support the density of Dinoflagellates that may endanger the water.

Abstrak

Pengaruh Pengkayaan Nutrien (N dan P) dan Rasionya terhadap Kelimpahan Fitoplankton di Perairan
Keunekai, Pulau Weh, Indonesia. Perairan Keunekai di Pulau Weh, Indonesia, menjadi sebuah wilayah pesisir yang
rentan karena degradasi dari anomali iklim dan tekanan antropogenik. Tingkat kematian karang yang tinggi disebabkan
oleh pemutihan masal dan pengeboman ikan beberapa tahun yang lalu mungkin telah menyebabkan penurunan kondisi
perairan dan gangguan terhadap siklus biogeokimia yang menghasilkan gejala blooming dan pengkayaan nutrient
(eutrofikasi). Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dari rasio nutrien pada kelimpahan
fitoplankton dan memantau kondisi perairan terkini di Keunekai. Analisis spektrofotometri digunakan untuk
mengetahui konsentrasi nutrien, dan metode perhitungan Sedgewick-Rafter digunakan untuk mengidentifikasi
kelimpahan fitoplankton dan spesiesnya juga. Variasi yang besar dalam konten N (berkisar dari 1,1 hingga 1,6 mg N /
L) dan khususnya konten P (berkisar 0,02-0,18 mg P / L) kemungkinan besar mencerminkan perbedaan dalam rasio
asupan N dan P daripada perbedaan absolut ketersediaan N dan P. Tiga taksa dari fitoplankton dan kelimpahan
relatifnya teridentifikasi di wilayah penelitian: Bacillariophyceae (diatom) (72%), Cyanophyceae (3%), dan
Dinoflagellate (25%). Diketahui bahwa batasan-P mengendalikan potensi blooming alga yang mendukung kepadatan
Dinoflagellate yang mungkin membahayakan perairan.

Keywords: Nutrients enrichment, N:P ratio, phytoplankton abundance, Keunekai waters

Introduction

Weh Island, one of the outermost islands of Indonesia,
has become a significant area for aquaculture and ma-

rine tourism [1]. These current anthropogenic activities
may be causing water degradation and playing a role in
declining water quality due to the presence of associated
marine litter and enhanced pollution.
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Keunekai water is located in the southern Weh Island
directly bordered by the Indian Ocean. As a result, this
area is predisposed by the atmosphere-ocean interac-
tions of the Indian Ocean such as Indian Ocean Dipole
(IOD), Monsoons, and Madden Julian Oscillation
(MJO), influencing water condition of Keunekai which
has become the poorest ecosystem in Weh Island. Many
biotas are demised due to anthropogenic factors, result-
ing in imbalanced ecosystem. If ongoing, it will disrupt
the biogeochemical cycle. Moreover, the fish-bomb
utilization in Keunekai Water which reaches the very
alarming level also supports the degradation of the wa-
ter [2].

The Keunekai water body is located off the southern
coast of Weh Island, directly bordered by the Indian
Ocean. As a result, this area is predisposed to the at-
mosphere-ocean interactions of the Indian Ocean, such
as the Indian Ocean Dipole (IOD), monsoons, and the
Madden-Julian oscillation (MJO), that influence the
conditions of the Keunekai waters, which has become
the most impoverished Weh Island ecosystem. The an-
thropogenic factors have also contributed to the demise
of many biotas, resulting in an imbalanced ecosystem,
which if it continues, will disrupt the biogeochemical
cycle. Moreover, “fish bombing” in Keunekai waters,
which has reached a very alarming level, also results in
the degradation of the water [2].

The best way to identify water degradation is to monitor
nutrients and phytoplankton because one of the impacts
of an imbalanced ecosystem is nutrient enrichment,
which triggers potential algal blooms due to biogeo-
chemical cycle disruption [3]. When nutrients enter a
water body from the land, algae blooms tend to occur
(eutrophication) [4]. When populations of phytoplank-
ton rapidly increase, especially toxic species of
dinoflagellates and diatoms, the water potentially be-
comes toxic due to the existence of harmful algae, sup-
ported by high nutrient availability [5].

N- and P-based nutrients play a significant role in the
recycling the of organic compounds due to their combi-
nation with carbon elements through the process of pho-
tosynthesis. Nutrients (nitrate, nitrite, ammonia, and
phosphate) also play a role in the processes and devel-

opment of living organisms, such as phytoplankton
populations, which depend on the availability of nutri-
ents in the water environment [6]. Inorganic compounds
are naturally derived from the water through decompo-
sition processes. The remains of dead organisms and
wastes are decomposed by bacteria to become nutrient
substances [7]. These substances are then involved in
the remineralization process, resulting in organic mate-
rials such as nitrate and phosphate.

The abundance of phytoplankton is controlled by the
nutrient conditions of the water; unusual autotroph or-
ganisms will bloom if the nutrient concentration is en-
hanced [8], resulting in the decline of water quality.
This will cause the mass mortality of organisms, such as
fish and other heterotrophic biota in the food chain
[9,10].

A related study by [11] of Pria Laot Bay waters, off the
northern coast of Weh Island, defined their chlorophyll-
a status (ranging from 0.02 to 1.7 µg/L) and nutrient
availability as above the minimum standard and ex-
tremely supportive of phytoplankton growth. This
northern bay is a significant area due to its utilization as
a marine tourism center (diving sites), its function as the
center of port activities, and its location near the city
center of Sabang. In contrast, because the Keunekai
water area is harder to access, being located quite far
from Sabang (± 13 km), it has been researched less.

Coral and ecosystems damaged by fish bombing several
years ago may trigger an environmental imbalance
(Figure 1). These conditions, resulting from imbalanced
and damaged conditions, can severely disrupt biogeo-
chemical cycles. If the biogeochemical cycle is ham-
pered, nutrient enrichment can potentially occur because
the accumulated nutrients are not able to be well-
absorbed by autotroph biota. Moreover, several hydro-
thermal vents (fumaroles) contribute to the nutrient
source in Keunekai waters. Because of all these inputs
and effects, a study analyzing the nutrient enrichment
and abundance of phytoplankton in the Keunekai waters
is essential. This study aimed to determine the influence
of the nutrient ratio on phytoplankton abundance in the
Keunekai waters by monitoring water conditions.

Figure 1. Dead Coral Observed in Keunekai Waters, Probably Caused by Fish Bombing
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Materials and Methods

Research location and observation stations. Keunekai
water sampling was conducted between March 14 and
16, 2017 (Figure 2). The sampling points included 12
observation stations. These stations covered an area of
dead coral, which became the focus of this study. The
sampling was undertaken three times during the dis-
placement times of high to low tidal conditions (07.00-

12.00 AM) (Figure 3). This condition was chosen be-
cause nutrients sourced from land predominate during
the low tidal condition (land-sourced nutrients). The
water sampling was accomplished using a rosette sam-
pler equipped with Niskin bottles. Shallow water sam-
ples, taken only from the water surface, were collected
due to the relatively shallow water in the research loca-
tion; however, they sufficiently represented the study
area.

Figure 2. Research location Map Showing the Phytoplankton and Water Sampling Observation Stations

Figure 3. Tide Forecasting During Sampling Period [12]
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Nutrients sampling and analysis. The collected water
samples were placed in labeled sample bottles, and the
N and P compounds were prepared for analyses by add-
ing four drops of concentrated H2SO4, specifically for P
analyses was done without pickling [13]. The prepared
sample bottles were then wrapped in aluminum foil and
placed in a cool box.

The samples were later filtered using a nitrocellulose
membrane filter, with a pore size 0.45 µm and a diame-
ter of 47 mm and kept cool in a refrigerator. The con-
centrations of dissolved nitrate, analyzed using a spec-
trophotometric device, ranged from 0.1 to 2 mg/L and
brucine was identified (wavelength of 410 nm). The
determination of ammonia concentrations, found as
phenates, was performed using a spectrophotometer,
using a 640 nm wavelength, and ranged from 0.1 to 0.6
mg/L NH3-N. The determination of the nitrites was
performed in the range 0.01–1 mg/L under acidic condi-
tions (pH 2–2.5) by reacting the nitrite to form azo
compounds. The resulting scarlet color was measured at
a wavelength of 543 nm [6].

Phosphate determination was done by employing spec-
trophotometer (model genesis 10s UV-VIS) method as
ascorbic acid levels in the range of 0.0 – 1 mg/L. The
principle of this analysis is based on the formation of
complex compounds blue phosphomolybdic. The com-
pounds are reduced by ascorbic acid to form molyb-
denum blue color complex. The intensity of the color
formed is appropriate with the concentration of phos-
phorus, the wave length used is 700-880 nm [14,15].

Phytoplankton analysis. Phytoplankton filtration was
done vertically and withdrawn from 5 meters depth to
the surface using 0.35 µm plankton net. Filters were
then preserved using 4 % formaldehyde. The preserved
sample analyzed employing Sedgewick Rafter method
by which it performed utilizing light microscope with
100 magnifications. To identify the types of phytoplank-
ton, we used identification books by [16,17,18]. Total of
phytoplankton abundance calculated based on [19]
equation as follow:

(1)

where, N = phytoplankton abundance (cell/m3), V =
total filtered water volume (m3), X = sampled water
volume (mL), Y = one drop of pipette volume (mL), and
Z = total individuals found (cell).

To evaluate the influence of nutrients (N and P) on phy-
toplankton abundance, linear regression and correlation
are employed in this study. However, there is a signifi-
cant correlation between nutrient and phytoplankton
abundance, therefore it is possible that the linear regres-
sion of any variable between nutrients and phytoplank-

ton abundance would be contaminated to some degree
by this correlation.

Results and Discussion

Nutrient concentration and its potential effect on
water quality. The phosphate concentration ranged from
0.04 to 0.18 mg P/L. The highest phosphate concentra-
tions were observed at stations P6, P10, and P11, reach-
ing 0.14, 0.18, and 0.14 mg P/L, respectively (Figure 4).
Because these were the most seaward stations, these
results indicated that sea-sourced phosphate predomi-
nates during the displacement of the flood to the ebb
tide. Compared to water quality standards established by
the Ministry of Environment (2004), the phosphate con-
centrations in the Keunekai waters were within the
standard but tended to be higher than the standard at sev-
eral stations (Table 1). As a limited nutrient in water,
phosphate is a key parameter and a chemical indicator
that controls the growth of autotroph biota. A higher
phosphate value (ranging from 0.035 to 0.1 mg P/L),
particularly, plays a large role in creating algae blooms
(eutrophication) [20].

The lowest phosphate concentrations were found at sta-
tions P1, P2, and P5, reaching 0.04, 0.04, and 0.02 mg
P/L, respectively (Figure 4). These lowest concentrations
of phosphate were located in eastern Keunekai waters,
where no estuaries are located.

Low phosphate concentration can be the natural condi-
tion of waters due to a lack of P input from adjacent land
or water masses (i.e. a lack of upwelling) [21]. Phosphate
also undergoes dissolution and precipitation, becoming
insoluble inorganic phosphate, such as Ca5(OH)(PO4)3

and iron phosphate [22]; soluble inorganic phosphates,
such as HPO4

2-, H2PO4-; and polyphosphate [23]. These
P cycles result in the deposition of biological, organic,
and inorganic phosphates in sediments due to its insta-
bility as a gas, which results in limited dissolved P in
water (endogenic process predomination) [24].

The concentration of ammonia ranged from 0.004 to
0.0016 mg N/L, varying across all the stations. The high-
est concentration of ammonia was observed at station
P4, reaching 0.0016 mg N/L, while the lowest concen-
tration of ammonia (0.004 mg N/L) was observed at
station P12. These concentrations were less than the
Ministry of Environment (2004) quality standard for am-
monia to support biotic life of around 0.3 mg N/L (Ta-
ble 1). This indicates that there are a lack of N fixation
and ammonification processes in the Keunekai waters.
Nevertheless, the concentration of ammonia at each sta-
tion tended to follow the same pattern as the nitrate and
nitrite levels (Figure 4).

In aquatic ecosystems, the existence of a cyanobacteria
population (prokaryote algae) can bind free N (N2) from
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the atmosphere, which then enters the water body. This
process, called N fixation, results in an ammonia com-
pound, the first formed organic N which this bound N
can then be used by autotroph biota and algae to support
growth [25]. While ammonia also results from the am-
monification process with the help of decomposers
(fungi and bacteria), it produces organic N in the form
of proteins (amino acids) [26].

The concentration of nitrite ranged from 0.03 to 0.17
mg N/L (Figure 4). Its highest concentration was identi-
fied at station P10, reaching 0.17 mg N/L; this was the
only station where the concentration of nitrite was
greater than the water quality standard established by
the Ministry of Environment (2004) (Table 1). This high
concentration of nitrite was supported by a phosphate
concentration, which could have potentially supported
an algae bloom at station P10. According to [6], a high
level of nitrite is induced by a low concentration of dis-
solved oxygen (Table 4) because nitrobacteria cannot
work optimally, due to a lack of oxygen, to convert NO2

compounds to NO3
- compounds. These conditions would

inhibit the N cycle in Keunekai waters.

The concentration of dissolved N in the Keunekai wa-
ters varied, ranging from 1.1 to 1.6 mg N/L. The highest
nitrate concentrations were found at stations P1 and P4,
reaching 1.6 and 1.5 mg N/L, respectively. The nitrate
concentration tended to be constant at all the stations,
which were all more than 1 mg N/L (Figure 4). These

concentrations of nitrate are categorized as “enriched
nutrients” and represent an extremely pernicious threat
to biota because of a tendency to trigger algae blooms
[27].

According to the Ministry of Environment (2004) (Ta-
ble 1), the water quality standard for allowed nitrate
concentration is no more than 0.008 mg N/L. The nitrate
concentration in the Keunekai waters was extremely
high, ranging from 1.1 to 1.6 mg N/L. Unutilized nitrate
and the gradual discharge of nitrates from estuaries trig-
gers the nitrate enrichment in Keunekai waters. These
conditions are very alarming because the existence of
abundant nutrient compounds in the waters may cause
eutrophication, which changes the functions of the nu-
trients (N and P) to become toxic [28].

Another standard quality recommended by [29] is a
limit of NH3 in both freshwater and marine environ-
ments to around 0.02 mg N/L, while a nitrite concentra-
tion considered ideal for marine fish ranges between
0.01 to 0.04 mg N/L. Nitrite-N level exceeding 0.55 mg
N/L can potentially cause a disease called “brown-
blood” or methemoglobinemia [30]. The ideal range for
nitrates is considered to be between 0.1 and 0.2 mg N/L.
However, the results of the current study showed that
the concentration of dissolved inorganic N (DIN) and
dissolved inorganic P (DIP) in the Keunekai waters
were within the range of the water quality standards estab-
lished by the Ministry of Environment (2004) (Table 1).

Figure 4. Comparison between nitrate (red), nitrite (black), ammonia (blue), and phosphate (green) concentrations in
Keunekai Waters
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Table 1. Summary of the Nutrient Concentration Monitoring Results from Keunekai Waters Compared with Ministry of
Environment (2004) Water Quality Standards

N Dissolved nutrients Standard quality for marine
biota (mg/L)

Keunekai waters
(mg/L)

1 Nitrate 0.008 1.1-1.6
2 Nitrite 0.015 0.003-0.17
3 Ammonia 0.3 0.004-0.016
4 Phosphate 0.015 0.02-0.18

Table 2. Descriptive Statistics of the Keunekai Water qual-
ity Parameters

Parameters Min Max Mean ST dev
pH 8.3 8.43 8.34 0.02

Salinity (o/oo) 30.1 31.52 31.1 0.33

Dissolved oxy-
gen (mg/L)

3.83 5.49 4.4 0.39

Temperature (oC) 29 30.3 29.75 0.22

Total suspend-
ed solid (mg/L)

12 24 17.2 3.59

Levels of dissolved oxygen (DO) ranging between 3.83
and 5.49 mg/L (Table 2) are categorized as “medium
polluted” waters [31]. An extremely low DO level indi-
cates that the activity of microorganisms utilizing oxygen
to break down organic matter into inorganic substances
is maximal [6]. According to [32], organic matter accu-
mulated in a bottom layer requires oxygen to break
down the organic materials. Low DO values caused by
the decomposition of organic materials hinders the bio-
geochemical cycle and reduces fertility levels [20].

Low salinity and relatively high temperature influence
the concentrations of nutrients in water bodies. Accord-
ing to [33], the nutrient concentration will increase if the
salinity value is low. Temperature conditions control
efficient C and N utilization that may play a key role in
photoinhibition, which is known to affect the rate of
algal growth [34]. In the current study, total suspended
solids (TSS) ranged from 12 to 24 mg/L. TSS disrupt
the penetration of light into water bodies, resulting in
reduced utilization of nutrients by autotroph biota for
photosynthesis. As a result, the nutrients are enriched in
the water [6].

N:P ratios in the Keunekai waters. Figure 5 illustrates
the relatively high ratios of DIN and DIP and reflects
the high rate of nutrient input from the mainland [35].
Anthropogenic activities cause imbalances in N:P ratios.
The higher the N:P ratio, the greater the nitrogen intake
from land sources, which results in an imbalanced con-
centration of P, N, and their derivatives.

The N:P ratios were high at stations P1 and P2, and ex-
tremely high at station P5. In addition, the concentration
of phosphate at these stations was lower than at the other
stations, resulting in a greater predominance of nitrate.

This indicated a high N concentration and an extremely
low P concentration at those stations. However, the
lower N:P ratios indicated that there were large supplies
of P-nutrients in the Keunekai waters, which resulted in
the lower comparison values of N:P. These ratios indi-
cate a risk of nutrient-enhanced algal bloom [36], main-
ly supported by the high availability of nitrate and
phosphate. The relatively high P loading was possibly
sourced from husbandry wastes and the high utilization
of detergent.

Individual phytoplankton domination in the Keunekai
waters. Three taxa of phytoplankton were identified in
the study area: Bacillariophyceae (diatom) (72%),
Cyanophyceae (3%), and Dinoflagellate (25%). The per-
centages were calculated from the number of total indi-
viduals identified (Table 3). Diatom was the most abun-
dant class, with Leptocylindrus sp., Rhizosolenia sp., and
Triceratium sp. the dominant genera growing in that habi-
tat. The peak abundances of diatoms coincide with high
DIN values, while the variation in nutrient requirement
and utilization by phytoplankton manages the tendency
for algae blooms in the waters [37].

Dinoflagellate was identified at stations P3, P4, P6, P10,
P11, and P12, and was the most abundant class ob-
served at station P10 (1830 cell/m3). The genera mostly
identified were Prorocentrum sp. (1900 cell/m3).
Prorocentrum is an epiphytic dinoflagellate, which has
a high adaptation level and a vast distribution, usually
being found in rubble, macroalgae, and sediment [38].
The abundance of dinoflagellate observed in the study
area is probably the result of the mass of dead coral
rubble in the Keunekai waters. The existence of epi-
phytic dinoflagellate endangers marine biota, and in the
food chain, it can produce toxins that accumulate in the
bodies of fish, inducing ciguatera fish poisoning [39].

The genera of the phytoplankton found in this study
were possibly limited by the N:P ratios, even though
physical factors such as temperature and salinity play a
role in controlling their abundance in water bodies. The
total abundance of phytoplankton in this study ranged
from 1780 to 3580 cell/m3. The highest abundance was
identified at station P10, where the N:P ratio was the
lowest (N:P < 10). This proves that P availability signi
ficantly influences the limiting of phytoplankton growth,
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Figure 5. Comparison Between Total Dissolved Nitrogen (N) and Dissolved Inorganic Phosphate (P) Ratios in Keunekai Waters

Table 3. Phytoplankton Individual Domination in the Keunekai Waters

Phytoplankton
Phytoplankton abundance (cells/m3)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Bacillariophyceae

Actinocyclus sp. 230
Cerataulina sp. 160 130
Chaetoceros sp. 180
Cocconeis sp. 150
Coscinodiscus sp. 340 170 410 370 1070 600 170 150 150 310
Fragilaria sp. 140 100 130
Leptocylindrus sp. 550 590 430 410 450 450 330 420 420 470 480 560
Navicula sp. 190 310
Nitzschia sp. 420 560 330 460 190 250 190
Rhizosolenia sp. 440 840 540 620 480 280 260 180 660 320 370 540
Thalassiora sp. 480 120 140 240 370 160
Triceratium sp. 150 100 330 220 170 300 520 320 460 130 420

Cyanophyceae
Pelagothrix sp. 130 150 200 100 140 130 180 180

Dinoflagellate
Amphidium sp. 350 200 400 450 200
Ostreopsis sp. 390 350 410
Prorocentrum sp. 300 460 570 380 250
Sinophys sp. 250 150 450 240
Thecadinium sp. 150 170 230 310

Total cell/m3 2310 2380 3040 3030 2050 2990 2180 2120 2240 3580 3060 2780
Total genera 7 6 10 9 7 11 4 7 7 10 11 8

while the lowest abundance was identified in station P5,
where the N:P ratio was < 40. According to [40], if the
critical N:P supply ratio simulating phytoplankton
growth is unstable, it will decrease with increasing
growth rate, reflecting systematic changes in cellular
composition between nutrient depleted and replete cells.

At station P10, where the N:P ratio was low, the con-
centration of N and P was generally high, resulting in
maximized phytoplankton growth and populations,
where epiphytic dinoflagellates were predominant. In
water bodies, nutrients are required by autotroph biota
(phytoplankton) to conduct photosynthesis to change
inorganic nutrients into organic substances, to be used

by both itself and the other heterotroph biota. Phyto-
plankton production essentially reflects the supply of
resources into an ecosystem, and the dinoflagellates
identified in this study are indicative of moderate to
high nutrient levels [41].

Limitation of N and P and its influence on the abun-
dance of phytoplankton. Figure 6 shows that the N:P
ratio clearly discriminated between the N- and P-limited
sites. For an N:P ratio > 16, the phytoplankton commu-
nity is P-limited, while for an N:P ratio < 16, N limits
the abundance of phytoplankton. For N:P ratios equal
to16, either N or P may limit phytoplankton productivity
or both elements are equally limiting (co-limitation) [42].
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Figure 6. Relationship between N and P Content and the
Nature of Nutrient Limitation in Keunekai Wa-
ters

Figure 7. Relationship between the Abundance of Surface
Phytoplankton and the Nutrient Content of
Keunekai Water

One station, P9, had an N:P ratio equal to 16 which is
the N- and P-limited site. According to [43], N will con-
trol the growth of autotroph biota if the N:P ratio is 20.
The large variation in N content (ranging from 1.1 to 1.6
mg N/L) and, particularly, P content (ranging from 0.02
to 0.18 mg P/L) most likely reflected differences in the
supply ratios of N and P, rather than differences in abso-
lute N and P availability. In Keunekai waters, the P-
limitation is mostly the dependent parameter controlling
the N:P ratio.

Figure 7 shows that the N and P contents of the
Keunekai waters were mainly determined by the supply
ratios of N:P. A high N content reflects situations in
which more N is available relative to P; in such situa-
tions, the total N is not necessarily high. The total N and
P availability probably mainly affects phytoplankton
production. This indicates whether N or P has a special
limitation on phytoplankton growth. N and P, together
with other nutrients (carbon and silicate) in water bod-

ies, may play a role in controlling the abundance of phy-
toplankton [44].

As shown in Figure 7, the linear regression calculated
from the data with higher phytoplankton density along
with increasing P, P-limitation predominantly influ-
enced the abundance of phytoplankton. In this case,
phytoplankton abundance was the dependent variable,
while the N and P concentrations were independent var-
iables. The R-square value reached 0.62 for P and 0.005
for N. These values demonstrate that the ability of the
independent variable (N and P concentrations) to ex-
plain the dependent variable (phytoplankton abundance)
was 62% for P and 0.5% for N. A 37.5% variance of the
dependent variable was explained by other factors. Pre-
vious [45] studies have proved that the high productivity
of P leads to a high bacterial population and high respi-
ration rates, which led to hypoxia and anoxia. The re-
lease of P reinforces eutrophication: the excessive value
of P is the most common cause of eutrophication in the
water [46]. It was clear that P became the limiting factor
in Keunekai waters, but N also has a special role in trig-
gering eutrophication; therefore, both N and P control
should be considered in the eutrophication management
of water bodies [47].

Conclusion

The N:P ratios fluctuated at all the observation stations.
Nutrient supply plays a role in managing N:P ratios in
water bodies, resulting in the risk of nutrient-enhanced
algal blooms. The large variation in N content (ranging
from 1.1 to 1.6 mg N/L) and, particularly, P content
(ranging from 0.02 to 0.18 mg P/L) most likely reflected
differences in the supply ratio of N and P, rather than
differences in absolute N and P availability. In the
Keunekai waters, the P-limitation mostly controlled the
potential for algae blooms by supporting the density of
dinoflagellates, which can reduce the water quality. The
lower the N:P value, the greater the abundance of phy-
toplankton, and vice versa. There is a significant corre-
lation between nutrient and phytoplankton abundance,
therefore it is possible that the linear regression of any
variable between nutrients and phytoplankton abun-
dance would be contaminated to some degree by this
correlation.

In this study, either the N or P especially limited phyto-
plankton growth. The peak abundances of diatoms coin-
cided with the high DIN values, while variations in the
nutrient requirements and nutrient utilization of phyto-
plankton manage the tendency of algae blooms in these
waters. A relatively high abundance of epiphytic
dinoflagellates (> 0.01 cells/m3) indicated that the
Keunekai waters are potentially moving toward a toxic
condition at several stations. It is essential that the con-
ditions of the Keunekai water are monitored to support
potential marine tourism and aquaculture.
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