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Abstract 
 

The present study analysed determinants of farm-level climate adaptation measures in Vietnam using a multinomial logit 
model fitted to data from a cross-sectional survey of 350 rice farmers. The findings show that human capital (farmer’s 
education level), social capital, financial capital (access to credit), farmland size, institutional factors (farmland tenure 
status), extension service access and constraint to market are the determining factors of climate-smart agricultural 
technology adoption among farmers. The results demonstrate the need for policymaking designed to improve the 
probability of households applying climate-smart agricultural technology as the most crucial step in successfully 
implementing adaptive agricultural production strategies to climate change. 

 
Asal Usul Petani Adopsi Beberapa Praktek Manajemen Pertanian Cerdas Iklim  

di Delta Mekong Vietnam 
 

Abstrak 
 

Penelitian ini menganalisis faktor-faktor penentu langkah-langkah adaptasi iklim tingkat pertanian di Vietnam 
menggunakan model multinomial logit yang sesuai dengan data dari survei cross-sectional terhadap 350 petani padi. 
Temuan menunjukkan bahwa modal manusia (tingkat pendidikan petani), modal sosial, modal keuangan (akses ke kredit), 
ukuran lahan pertanian, faktor kelembagaan (status kepemilikan lahan pertanian), akses layanan penyuluhan dan kendala 
pasar adalah faktor penentu pertanian cerdas-iklim adopsi teknologi di kalangan petani. Hasilnya menunjukkan perlunya 
pembuatan kebijakan yang dirancang untuk meningkatkan kemungkinan rumah tangga menerapkan teknologi pertanian 
cerdas-iklim sebagai langkah paling penting dalam berhasil menerapkan strategi produksi pertanian adaptif terhadap 
perubahan iklim. 
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1. Introduction 
 
For the past 30 years (1990-2018), agricultural and rural 
areas have continued to play an essential role in the 
Vietnamese economy, employing around 60.0% of the 
workforce and accounting for 16.3% of GDP (General 
Statistical Office of Vietnam [GSO], 2019). Nevertheless, 
the substantial growth in agricultural production has 
come at a high environmental cost; agriculture being the 
second-largest source of greenhouse gas (GHG) emissions 
after the energy sector (World Bank, 2016). As a result, 
Vietnam is one of the country’s most vulnerable to 
climate change. Among the 84 developing coastal 

countries profoundly affected by sea-level rise, Vietnam 
ranks first in terms of the consequences to the population 
and GDP performance. It ranks second in terms of the 
influence of climate change on land area and agricultural 
production (World Bank, 2016). Climate change is 
expected to reduce the agricultural production area and 
agricultural productivity in Vietnam (World Bank, 2016). 
 
Furthermore, rising sea levels may inundate most of the 
Mekong and Red River deltas by 2070 and cause adverse 
impacts on agriculture. Flooded ponds and lakes could 
suffer a complete loss of stock. Climate change will 
probably also reduce the variety of aquatic resources and 
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degrade soil quality (Van Mai & Lovell, 2015). 
Agriculture is the second-largest source of GHG 
emissions, contributing to about 33% of total GHG 
emissions in Vietnam in 2010 (GSO, 2019). Within the 
agricultural sector, rice cultivation is responsible for 
significant GHG emissions, accounting for 46.3% of 
agriculture’s total emissions (Food and Agriculture 
Organization of the United Nations [FAO], 2010). 
Studies revealed that climate change adaptation response, 
including climate-smart agriculture participation, played 
a crucial role in improving technical efficiency, economic 
benefits, and food security (Hasan, Desiere, D’Haese, & 
Kumar, 2018; Ho & Shimada, 2019; Khatri-Chhetri, 
Aryal, Sapkota, & Khurana, 2016; Lipper et al., 2014; 
Taneja, Pal, Joshi, Aggarwal, & Tyagi, 2019). In the 
Vietnamese Mekong Delta, many climate-smart 
agricultural practices have been applied in rice 
production. One practice is called One Must–Six 
Reductions (“One Must” recommends that farmers use 
certified seeds; “Six Reductions” includes reducing seed 
rate, fertiliser, pesticide, water, post-harvest loss, and 
GHG emissions). Other climate-smart agricultural 
practices are system of rice intensification, Viet-GAP, 
integrated pest management, crop production, alternate 
wetting and drying, large-field model, and weather-risk 
insurance (Chi et al., 2013; Dung, Ho, Hiep, & Hoi, 2018; 
Ho & Shimada, 2019; Lampayan, Rejesus, Singleton, & 
Bouman, 2015). These technologies are based on soil 
management, water management, crop management, and 
risk management against natural disasters that contribute 
to climate-smart agriculture from several vital perspectives, 
including productivity, adaptation through short-term 
risk management, adaptation through longer-term risk 
management, and mitigation. However, the majority of 
climate-smart agricultural technologies have a low to 
average adoption rate in Vietnam of below 30% (GSO, 
2019). 
 
Previous studies used farm management models to 
explain decision making and technology adoption by 
farmers and focused on microeconomics theory with 
assumptions of profit maximisation and cost-benefits 
(Addisu, Fissha, Gediff, & Asmelash, 2016; Asrat & 
Simane, 2018; Atinkut & Mebrat, 2016; Ayal & Leal 
Filho, 2017; Dung et al., 2018; Fadina & Barjolle, 2018; 
Gebrehiwot & Van Der Veen, 2013; Khatri-Chhetri, 
Aggarwal, Joshi, & Vyas, 2017; Teklewold, Kassie, & 
Shiferaw, 2013; Tessema, Aweke, & Endris, 2013; 
Wassie & Pauline, 2018). Nevertheless, these models 
cannot capture the complexity of farmers' behaviour and 
attitudes toward climate-smart agricultural technology 
adoption. They also do not take into account all related 
constraints on climate-smart agricultural adoption, which 
include transaction costs, social benefits or costs, the role 
of social capital with collective actions, and the role of 
institutions. 
 

Collective action is treated as a significant adaptation 
decision regarding the management of agricultural and 
other resources that community livelihoods depend on. It 
plays an essential role in supporting the community co-
adapting to climate change. Collective action involves 
activities carried out together, such as resource 
contribution, coordination, information sharing, knowledge 
sharing, and the formation of institutions to support the 
community in adopting climate-smart agricultural 
technologies more effectively. Social networks are 
relevant in the farmers' decision making about climate-
smart agricultural adoption based on their function as 
centres of technical, moral, and financial support. 
 
Institutions factor as security of land tenure and land 
ownership is related to adoption is debated in the 
literature. The land is a critical component of development 
and, in economic terms, considered one of the critical 
factors of production. Therefore, land tenure arrangements 
need an explicit examination to facilitate climate 
adaptation planning. The importance of formal land 
tenure to livelihoods has also been strengthened by peri-
urbanisation and the increased commoditisation of land, 
which has led to more intense competition for land. The 
causal relationship between these factors and climate-
smart agricultural technology adoption was rarely 
evaluated in past empirical studies. Indeed, dependent 
variables in previous studies were used as specific 
climate-smart agricultural practices for each case study, 
which made it difficult to represent all adaptation 
strategies to climate change situations. Therefore, the 
results did not predict a model of farmers' behaviour in 
terms of climate-smart agricultural practices for all 
research cases. In Vietnam, many studies provided 
variables that explained the adoption of sustainable 
technologies among farmers in the Mekong Delta (Dung 
et al., 2018; Heong, Escalada, & Mai, 1994; Huan, Mai, 
Escalada, & Heong, 1999; Le Dang, Li, Nuberg, & 
Bruwer, 2014). However, there is a lack of empirical 
studies conducted in the context of climate-smart 
agricultural practices adoption by Vietnam’s agriculture, 
which is one of the Southeast Asian countries most 
significantly impacted by climate change. In consideration 
of the utility needs in the literature and climate-smart 
agricultural practices, this study uses a multinomial 
regression model to explore the antecedents of farmer's 
adoption behaviour when it comes to climate-smart 
agricultural practices, including soil and water 
management, yield management, and weather-risk 
management in the Vietnamese Mekong Delta. 
 
Literature review and hypothesis development. The 
concept of climate-smart agriculture is designed to 
improve the integration of agricultural development and 
resilience to climate risks. It aims to achieve food 
security and social and economic goals under the adverse 
effects of climate change. Climate-smart agriculture 
initiatives sustainably increase productivity, enhance 
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resilience, reduce net greenhouse gas emissions (GHGs), 
and require action planning to address trade-offs and 
synergies between the three pillars of productivity, 
adaptation, and mitigation (FAO, 2013). Climate-smart 
agriculture has many approaches that can be considered 
at different levels; Climate-smart agriculture should not 
be considered only a collection of production technologies 
or practices. Climate-smart agriculture is a process. Its 
many steps include developing techniques and methods, 
modelling based on different climate change contexts, 
integration of information technology, insurance 
mechanisms to limit risks along the value chain and 
through institutional arrangements, and policy systems 
(FAO, 2010). As such, climate-smart agriculture is not 
only a manufacturing technology but a combination of 
many interventions in the production systems, landscapes, 
value chains, or policies that cover a region. Climate-
smart agriculture is specific to the location. Successful in 
one area, it may not be considered intelligent in another 
area, and no intervention solution is climate-smart at all 
times or in all places. Interventions need to consider the 
interaction between different factors at the landscape 
level, in and between ecosystems, as well as part of the 
policy and institutional practices (FAO, 2013). 
 
In Vietnam, CSA in rice production aims to provide 
measures for yield management (e.g., the system of rice 
intensification, integrated pest management, improved 
variety for rice, change in land uses with rice-peanuts/crop 
rotation with rice-shrimp, changing sowing or harvesting 
date, reducing the number of crop plantings, changing 
fertiliser and chemical use, changing crop variety, and 
diversifying crops); soil and water management (e.g., 
One Must, Six Reductions;1 Three Reductions, Three 
Gains; Large Field Model; and VietGAP); and weather 
risk management (e.g., agricultural insurance) (Chi et al. 
2013; Dung et al. 2018; Ho and Shimada 2019; 
Lampayan et al. 2015). 
 
Researchers have proposed many theoretical frameworks 
to explain the behaviour of individual choice. Based on 
these behavioural economic theories, several studies of 
choice behaviour were examined to select variables 
regarding the adoption of sustainable agricultural practices 
among farmers. 
 
A farmer’s education level typically correlates positively 
with technological innovations adoption because of the 
assumed link between education and knowledge 
accumulation and a farmer’s decision-making capacity 
(Addisu et al., 2016; Asrat & Simane, 2018; Dung et al., 
2018; Fadina & Barjolle, 2018; Gebrehiwot & Van Der 
Veen, 2013; Teklewold et al., 2013). Education level 
might significantly affect the ability to absorb technical 
information and coherence in applying climate-smart 
agricultural technologies in practice. A farmer's age has 
also been regularly assessed in terms of the adoption of 
climate-smart agricultural technology practices, resulting 

in a positive correlation (Atinkut & Mebrat, 2016), a 
negative association (Addisu et al., 2016; Asrat & 
Simane, 2018; Gebrehiwot & Van Der Veen, 2013; 
Maguza-Tembo, Mangison, Edris, & Kenamu, 2017), 
and insignificant correlation (Neill & Lee, 2001). In this 
study, the age of the household head has both positive 
and negative impacts on adaptation measures, in which 
old age is associated with more experience and expect 
older farmers to adapt to changes in climate. However, 
young farmers to have a longer planning horizon and to 
take up long-term adaptation. Gender of the household 
might affect climate-smart agricultural technology 
adoption due to financial or resource constraints, 
availability of information, access to extension services, 
and available adaptation strategies. These factors tend to 
be harder to achieve and to create higher labour loads for 
women farmers (Atinkut & Mebrat, 2016; Jost et al., 
2016; Mersha & Van Laerhoven, 2016). 
 
Farm size refers to the total land available to a farmer for 
agricultural production. Given the uncertainty and the 
fixed transaction and information costs associated with 
technologies, there may be a critical lower limit on farm 
size that prevents smaller farms from making an adoption 
decision (Dung et al., 2018). Owners of larger farms are 
more willing to invest in climate-smart agricultural 
technologies than those who do not have as much land 
(Atinkut & Mebrat, 2016; Fadina & Barjolle, 2018; 
Teklewold et al., 2013). The larger the area of productive 
land, the more motivation for farmers to learn how to 
apply climate-smart agriculture to keep costs, labour, and 
care to a minimum.  
 
Agricultural technology adoption requires sufficient 
economic well-being, especially if new equipment is 
needed (Dung et al., 2018). Khatri-Chhetri et al. (2017) 
indicated that technologies and the cost of implementation 
influence farmers' preferences and willingness-to-pay. 
The impact of off-farm income or income, access to 
credit on adoption revealed a positive correlation (Addisu 
et al., 2016; Asrat & Simane, 2018; Gebrehiwot & Van 
Der Veen, 2013; Tessema et al., 2013; Teklewold et al., 
2013). If a farmer has off-farm income, income, or access 
to credit, they are willing to invest in technology. 
 
Social capital is a long-lasting network of community 
acquaintances and identities that can be institutionalised. 
Social capital includes mutual trust; reciprocity based on 
rules, exemplary behaviours, and sanctions; and unity to 
form a social network that governs all human-to-human 
interactions and thus contributes to economic development 
(Coleman, 1988; Fukuyama, 1995). Social capital and 
farmer networks can influence technology adoption 
decisions (Kassie, Jaleta, Shiferaw, Mmbando, & 
Mekuria, 2013; Marenya & Barrett, 2007). Social capital 
represents a combination of variables: membership in a 
farmers' association, the number of relatives inside and 
outside the village that a household can rely on for critical 
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support, and the number of traders that a farmer knows 
inside and outside the town (Asrat & Simane, 2018). 
Social capital refers to a farmer's social network, 
including the ability to access information, find jobs, 
access to credit, insurance against unforeseen risks, 
exchange of information on prices, reduction of 
information asymmetry, and the ability to contract in 
agricultural production (Maertens & Barrett, 2012). 
 
The most critical barriers to climate change adaptation 
are lack of information and inadequate extension services 
(Addisu et al., 2016; Asrat & Simane, 2018; Atinkut & 
Mebrat, 2016; Gebrehiwot & Van Der Veen, 2013; 
Tessema et al., 2013; Wassie & Pauline, 2018). Information 
sources that positively influence adoption can include 
other farmers, media, meetings, and extension. The 
agricultural extension service is a formal source of 
information for producers, based on the contact with 
extension agents and farmer groups (Tessema et al., 2013). 
 
Farmer's changing agricultural practices are due to 
observations of climatic and environmental change (Jost 
et al., 2016; Schattman, Conner, & Méndez, 2016). 
Farmers' perception of the impact of climate change is 
significantly related to the age and gender of the head of 
household, income, knowledge of climate change, social 
capital, and agro-ecological settings (Abrha, 2015; 
Atinkut & Mebrat, 2016; Ayal & Leal Filho, 2017; 
Deressa, Hassan, & Ringler, 2011; Schattman et al., 2016). 
 
Land tenure status is a descriptor that differentiates self-
owned farmland from property that is rented from a third 
party (Dung et al., 2018). A farmer is more likely to 
manage self-owned land than rented property because the 
benefits of long-term practices like the adoption of 
climate-smart agriculture accrue over time (Carolan, 
2005; Isgin, Ilgic, Forster, & Batte, 2008; Teklewold et 

al., 2013). Climate-smart agriculture adoption is affected 
by the land tenure status of the farmer, which has 
generally been consistent across a range of studies (Dung 
et al., 2018). 
 
Access to the market is directly associated with the 
transaction costs that occur when households participate 
in input and output marketing activities (Dung et al., 
2018; Kassie et al., 2013). Transaction costs are barriers 
to participation by rice farmers and determinants of 
market failure in developing countries (Addisu et al., 
2016; Asrat & Simane, 2018; Atinkut & Mebrat, 2016; 
Tessema et al., 2013). 
 
2. Methods 
 
The quantitative models adopted in previous studies 
include the multivariate logit, probit, ordered logit/probit, 
and multinomial logit model (Addisu et al., 2016; Atinkut 
& Mebrat, 2016; Deressa et al., 2011; Fadina & Barjolle, 
2018; Gebrehiwot & Van Der Veen, 2013; Teklewold et 
al., 2013; Tessema et al., 2013). The logit model was 
typically adopted in choice behaviour studies and is 
based on the theory of maximum likelihood suggested by 
Ben-Akiva and Lerman (1985). The logit model is 
classified into two major categories, including the logit 
model of binary and multinomial models. Multinomial 
logistic regression was adopted to predict the probability 
of category membership on a dependent variable based 
on multiple independent variables (see Table 1). Like 
binary logistic regression, the multinomial logistic 
regression uses maximum likelihood estimation to 
evaluate the probability of definite membership. 
Tabachnick, Fidell, and Osterlind (2001) argued that the 
multinomial logistic regression technique has many 
significant advantages relative to other regression models. 

 
Table 1. Definition of Variables in The Research Model 

 
Variable Definition Expected sign 
Dependent variable Dummy, 3 = Yield management adopter; 2 = Soil and Water management adopter; 1 = Weather-risk 

management adopter; 0 = non-adopter. 
 

Independent variables 
Gender 
Age  

Dummy, the gender of household head: 1= male, 0 = female 
Continuous, age of household head (years) 

− 
−/+ 

Education level Continuous, the number of formal education year of the household head + 
Farmland size Continuous, total farmland (1.000m2) + 
Credit access Dummy, access to credit of household: 1 = yes, 0 = otherwise + 
Social capital Continuous, the number of traders/ relatives that farmer trust + 
Extension service access Continuous, the number of agricultural knowledge sources that farmer accesses by 

an extension (television-radio, agricultural paper-book, smartphone, extension 
officer, extension-education courses, others) 

+ 

Perceived climate change Dummy, perceived climate change risks: 1 = yes, 0 = otherwise + 
Farmland tenure status Dummy, farmland tenure status: 1 = secure, 0 = otherwise + 
Market Constraint Continuous, access to markets (Distance to input/product market, km) − 
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We assumed that farmers choose adoption to maximise 
their expected utility (Y*ij). The latent model (Y*ij) 
describes the behaviour of farmer i in adopting climate-
smart agricultural technology j rather than adopting any 
other alternative technologies, which can be expressed as 
Equation (1): 
 
Y*ij = biXi + eij     j = 1….J  (1) 
 
 
Where Xi is a vector of independent variables, namely 
human capital, farmland size, financial capital, social 
capital, extension service access, perceived climate 
change impact, farmland tenure status, and access to 
input and product factor markets; and εi is a random error 
term. 
 
The utility to the farmer of choosing a climate-smart 
agricultural technology is not observed, but the farmer’s 
adoption decision is observable. Let (Y) be an index that 
denotes the farmer’s choice of climate-smart agricultural 
technology. Thus, the farmer will choose a climate-smart 
agriculture practice j preference for adopting any other 
climate-smart agriculture practice m if: 
 

Y = !
1	iff	δ'( < 0	or	Y'.∗ > 	

123
1	4. (Y'1

∗ )
j	iff	δ'( < 0	or	Y'(∗ > 	

123
1	4. (Y'1

∗ )    for all m ¹ j (2) 

Because	d'(>	?@A∗ B	CDE
C	FGH?@C

∗ I	?@G
∗ J	K	L	 

 
 
Equation (2) indicates that farmer i will choose a climate-
smart agriculture j to maximise expected profit and 
obtain greater expected profit than any other technology 
m ≠ j (Bourguignon, Fournier, & Gurgand, 2007).  
 
The δjs are assumed to be independent and identically 
Gumbel distributed (Bourguignon et al., 2007). The 
probability that farmer i with characteristics Xi chooses 
a j over another climate-smart agricultural technology 
can be specified by a multinomial logit selection model 
(McFadden, 1973) as follows: 
 
P Mδ'( < 0/XPQ = 

R3S(T@UG)

∑ R3S(T@UC)
W
CXA

 

 
 
This expression shows that consistent maximum likelihood 
estimates of δj can be obtained given its cumulative and 
density functions G(δ) = exp(−e-d) and g(δ) = exp(−δ −e-
d), respectively. A sample size requirement for the 
multinomial logistic regression requires a minimum of 10 
cases per independent variable (Schwab, 2002). 

The Mekong Delta is the largest rice production area in 
Vietnam, located in southwestern Vietnam. The Delta 
covers 39.000 km2 with about 600 km of coastline. It is 
divided into 12 provinces (Long An, Tien Giang, Ben 
Tre, Tra Vinh, Vinh Long, Dong Thap, An Giang, Kien 
Giang, Hau Giang, Soc Trang, Bac Lieu, and Ca Mau) 
and has one central city, Can Tho. Provinces of the Delta 
are categorised into four groups related to their 
vulnerability to climate change: high vulnerability level 
(Tra Vinh and Ca Mau provinces), moderate vulnerability 
level (Bac Lieu, Soc Trang, and Ben Tre provinces), low 
vulnerability level (Long An, Tien Giang, Vinh Long, 
Can Tho, Kien Giang, Vinh Long, and Hau Giang 
provinces), and the lowest level of vulnerability to 
climate change (An Giang and Dong Thap provinces) 
(Ho & Shimada, 2019). 
 
The sample areas included four provinces (An Giang, 
Long An, Ben Tre, and Tra Vinh) and were randomly 
chosen from each of the four vulnerability-level groups, 
respectively. The sample areas also represent three major 
water resource zones: the highly flooded zone (Long 
Xuyen and Plain of Reeds), the fresh-water zone (upper-
lands between the Tien and Hau rivers), and the saline 
intrusion zone (East Sea Coastal, Ca Mau Peninsula) 
(Tuan, Hoanh, Miller, & Sinh, 2007). Cross-sectional 
data from 350 households collected via face-to-face 
interviews with a structured questionnaire was used. A 
stratified random sampling procedure was adopted to 
select three wards in two districts in each province. The 
respondents were household heads randomly selected from 
the official household list of each commune, based on the 
guidance and support of village leaders. The distribution of 
sample households is shown in Table 2 and Figure 1. 
 

Table 2. Sample Distribution in the Study Area 
 

Study Area Sample size 
An Giang 
Chau Thanh 
Thoai Son 
 

 
30 
30 

Long An 
Tan Thanh 
Can Duoc 
 

 
40 
40 

Ben Tre 
Ba Tri 
Thanh Phu 
 

 
50 
50 

Tra Vinh 
Tieu Can 
Tra Cu 

 
60 
50 
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Figure 1. Map of Vietnam and the Mekong Delta Study Area 
 
 
3. Results 
 
The result of the survey showed that 212 cases (60.57%) 
had adopted climate-smart agriculture, while 138 cases 
(39.43%) had not. Considering the adopters, 96 cases 
(27.4%) adopted weather-risk management, 60 cases 
(17.10%) adopted soil and water management, and 56 
cases (16.0%) adopted yield management. Men headed 
about 93.10% of the small-holder farm households, both 
climate-smart agriculture adopters and non-adopters. 
Other characteristics of the adopters and non-adopters in 
the sample are presented in Table 3 and Table 4. 
 
Table 3. Farmer’s Characteristics (All Cases) 
 

Variable Min Max Mean SD 
Gender 0.00 1.00 0.93 0.25 
Age  20.00 63.00 39.61 11.11 
Education level 0.00 16.00 8.64 4.26 
Farmland size 0.50 11.00 4.35 2.22 
Social capital 1.00 6.00 3.31 0.89 
Access to extension 2.00 5.00 2.75 1.04 
Perceived climate 
change 

0.00 1.00 0.50 0.50 

Farmland tenure 0.00 1.00 0.80 0.40 
Market constraint 1.00 13.00 4.30 1.86 

 
 
Results off-tests and chi-square tests in Table 4 indicate 
that a male farmer who is head of household, with a 
higher education level, a larger farm, access to extension, 
access to markets, higher social capital, access to credit, 
perceived climate change, and secured farmland is more 
likely to adopt climate-smart agricultural practices than 
other farmers. 
 

The estimation results of the multinomial logit model in 
Table 5 show the logistic coefficient for each 
independent variable for each alternative category of the 
dependent variable. The chi-square results show that the 
likelihood ratio statistics are highly significant (p < 
.0001), suggesting the model has a reliable explanatory 
power for behaviour to adopt climate-smart agricultural 
technologies among farmers. The distribution in Table 5 
reveals that the value of Pseudo McFadden R2 was at 
0.394, Cox and Snell R2 was at 0.646, and Nagalkerke R2 
was at 0.696, suggesting that 39.40%, 64.60%, and 
69.60% of the variability is explained by this set of 
variables used in the model, respectively. 
 
Table 5 presents the estimated marginal effects, p-levels, 
and the estimated coefficients of the multinomial logit 
model. The results show that most of the relevant 
explanatory variables in the model are statistically 
significant at 10% or higher, and the signs on most 
variables are as expected. The chi-square results show 
that likelihood ratio statistics are highly significant (p < 
.001), suggesting the model has a reliable explanatory 
power for adoption behaviour of climate-smart agriculture 
among rice farmers in the case of the Mekong Delta, 
Vietnam. 
 
The marginal effects are presented in Table 5 by variable 
category. As is shown in this table, the most critical 
determinants of climate-smart agricultural technology 
adoption include perceived climate change impact, 
education level, farmland size, access to credit, social 
capital, access to extension, secure farmland tenure, and 
constraint to market. 
 
 
 

Chau Thanh

Thoai Son

10° 20' 00" N

106° 40' 00" E
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Table 4. Comparisons of Explanatory Variables Means among Groups 
 

 Non-adopters Weather-risk 
management 

Soil and Water 
management 

Yield management p_value 

Gender 0.81 0.97 0.99 0.97 0.043 
Age 41.01 40.40 39.54 40.16 0.474 
Education level 5.33 10.00 10.19 11.47 *** 
Farmland size 2.07 4.08 4.44 5.82 *** 
Access to credit 0.44 0.56 0.66 0.91 *** 
Social capital 0.22 0.22 0.84 0.90 *** 
Extension access 0.54 0.87 2.90 2.95 *** 
Perceived climate 
change risk 
 

0.45 0.74 0.77 0.91 *** 

Farmland tenure 
status 
 

0.64 0.84 0.89 0.97 *** 

Market constraint 
 

5.12 4.45 4.33 3.58 *** 

Note. ***p < 0.001 
 
 

Table 5. Parameter Estimates and Marginal Effects of Explanatory Variables from the Multinomial Logit 
Adoption Model 

 
Variables Weather-risk management Soil and Water management Yield management 

Estimated 
coefficients 
 

Marginal 
effects 

Estimated 
coefficients 

Marginal 
effects 

Estimated 
coefficients 

Marginal 
effects 

Gender 
 
 

Age  

−0.480 
(0.710) 
 

0.023 
(0.016) 
 

0.150 
 
 

0.005 

15.731 
(0.071) 
 

0.009 
(0.022) 

0.144 
 
 

−0.0004 

−0.984 
(1.299) 
 

0.026 
(0.023) 

−0.053 
 
 

0.0006 

Education level 0.297*** 
(0.053) 
 

0.048 0.316*** 
(0.069) 

0.006 0.442*** 
(0.078) 

0.012 

Farmland size 0.305*** 
(0.118) 
 

0.055 0.267** 
(0.142) 

0.003 0.353** 
(0.148) 

0.008 

Financial access 0.294 
(0.400) 
 

0.014 1.020* 
(0.555) 

0.040 1.777*** 
(0.713) 

0.075 

Social capital 0.079 
(0.250) 
 

0.027 0.694*** 
(0.294) 

0.034 0.734*** 
(0.316) 

0.033 

Extension service 
access 

0.107 
(0.231) 
 

0.008 0.539** 
(0.264) 

0.025 0.519* 
(0.282) 

0.021 

Perceived climate 
change 

2.207*** 
(0.404) 
 

0.197 3.839*** 
(0.586) 

0.133 4.090*** 
(0.661) 

0.140 

Land tenure status 0.150 
(0.462) 
 

0.026 1.324* 
(0.714) 

0.050 1.183 
(0.126) 

0.041 

Market access −0.066 
(0.105) 
 

0.006 −0.234 
(0.148) 

−0.009 −0.465*** 
(0.163) 

−0.021 

Constraint to 
market 

−5.342 
(1.373) 
 

− −27.017 
(1.926) 

− −13.130 
(2.430) 

- 

Number of obs = 350; LR chi2 (30) = 363.64; Prob > chi2 = 0.000; Log likelihood = 558.47; Pseudo Cox and Snell R2 
 = 0.646; Pseudo Nagelkerke R2 = 0.696; Pseudo McFadden R2 = 0.394. 
 

Note. *p < 0.05; **p < 0.01; ***p < 0.001; standard errors are in parentheses; reference category: non-adoption 
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4. Discussion 
 
Small farmers play a crucial role in increasing production 
to ensure food security, but they are faced with many 
barriers such as market access, knowledge, skills and 
technology innovations, new value chains, and lack of 
many other opportunities. Overcoming these difficulties 
to develop sustainable agriculture requires dedication and 
effort. All stakeholders must participate, including the 
government, businesses, farmers, scientists, and banks, 
and the role of farmers is crucial. Therefore, an 
understanding of the factors that restrict farmers from 
adopting climate-smart agriculture has become a 
significant question for stakeholders. This understanding 
may aid in the design and implementation of 
interventions to overcome barriers. Subsequently, a 
critical issue that requires attention at the policy, 
research, and practical levels is the successful adoption 
and diffusion of climate-smart agricultural technology 
innovations. This study aligns with other research results 
that are cited in the literature review of this study. 
 
The education level of the household head was found to 
be positively and significantly correlated with weather-
risk management, soil and water management, and yield 
management at p < 0.01. A one-unit increase in the 
education level of farmers increased the probability of 
adoption of weather-risk management by 4.8%, soil and 
water management by 0.6%, and yield management by 
1.2%, respectively, relative to the base category 
(nonadopting). Previous studies have also shown that 
farmers with better formal education may be more likely 
to adopt climate-smart agricultural technologies than 
others (Addisu et al., 2016; Asrat & Simane, 2018; 
Fadina & Barjolle, 2018; Gebrehiwot & Van Der Veen, 
2013). The availability and quality of labour make it 
difficult for farmers to proactively cope with and reduce 
losses due to extreme weather events, especially when 
there is unseasonal rain in the Mekong Delta. Farmers 
often make use of family labour in rice cultivation. The 
main household labour force has tended to decrease while 
the rural labour force is also becoming scarce because 
migrants are seeking jobs in urban areas. Therefore, less 
labour-intensive or mechanised methods of agricultural 
production in some stages—especially in harvesting—is 
an urgent requirement for farmers to be able to adopt 
climate-smart agricultural technologies. 
 
Farm size appears to be positively and significantly 
correlated with weather-risk management, soil and water 
management, and yield management at p < 0.01 and p < 
0.05, respectively, relative to the base category. A 1,000 
square meter per household unit increase would increase 
the probability of adopting weather-risk management, 
soil and water management, and yield management by 
5.5%, 0.3%, and 0.8%, respectively, for households with 
a small farmland size. The relationship between climate-
smart agricultural technology application and the amount 

of farmland is due to financial constraints. Farmers with 
large production scales are more financially capable; 
therefore, they have a higher probability of being able to 
afford climate-smart agricultural technology in production 
(Atinkut & Mebrat, 2016; Fadina & Barjolle, 2018). In 
the Mekong Delta, agricultural land is limited, more than 
50% of fields have an area of less than 0.5 ha, which 
makes it difficult for farmers to cope with unexpected 
weather impacts. Although a financial support policy for 
agricultural development at the household level has been 
issued, it is difficult to access this financial resource due 
to procedures and timing of bankers, and demand 
difference of farmers with financial products provided. It 
is difficult to obtain loans from commercial banks in time 
to meet the needs of farmers because they not only need 
capital for rice cultivation but also for other economic 
and livelihood needs. As a result, most farmers buy 
deferred payments that come due at the end of each rice 
harvest, and they pay more than twice as much as they 
would pay the bank. 
 
Access to credit showed a positive and significant 
correlation with soil and water management and yield 
management at p < 0.10 and p < 0.05, respectively, 
relative to the base category. A farmer, who has available 
credit is more likely to adopt climate-smart agricultural 
technologies by 4% and 7.5%, respectively, higher 
compared to those who do not have access to credit. 
Inability to access credit might discourage households 
from adopting technology if the application faces legal 
constraints or involves additional investment. This may 
prevent small farmers from adopting climate-smart 
agricultural technologies (Addisu et al., 2016; Asrat & 
Simane, 2018; Gebrehiwot & Van Der Veen, 2013; 
Tessema et al., 2013). 
 
Social capital is positively and significantly correlated 
with the household decision to adopt soil and water 
management and yield management at p < 0.01. A one-
relative/trader increase in farmer’s trust can increase the 
probability of using these two adoption measures by 
3.4% and 3.3%, respectively, relative to the base 
category. The effect of social capital and social networks 
on farm households on the choice of applying climate-
smart agriculture has been assessed in many studies 
(Bandiera & Rasul, 2006; Isham, 2002; Kassie et al., 
2013; Wollni et al., 2010). Farmers’ social capital can 
affect the application of technological advances in many 
ways, such as information exchange, market access, 
labour exchange, and capital access, as well as coping 
with risks in production and the market. In the context of 
the Mekong Delta, the collective actions by farmers 
include knowledge sharing, mass sowing, dyke 
protection, water management, and meeting market 
requirements.  
 
Contacts with the extension service have a positive and 
significant correlation with the likelihood of choosing of 
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soil and water management and yield management by p 
< 0.05 and p < 0.10, respectively, relative to the base 
category. A one-unit increase in the number of extensions 
contact sources is likely to increase the probability of the 
farmer adopting the two measures by 2.5% and 2.1%, 
respectively, over those households who do not use 
extension services. Agricultural extension is the official 
source of information for farmers in agrarian production. 
Official information about markets, scientific advances 
or technical solutions can minimise risks, uncertainties, 
and asymmetric information. Extension thereby plays a 
crucial role in increasing the choice of application of 
technological advances in general and climate-smart 
agriculture measures in particular (Jansen, Pender, 
Damon, Wielemaker, & Schipper, 2006). 
 
Households’ perception of the impact of climate change 
was found to be positively and significantly correlated 
with the choice of weather-risk management, soil and 
water management, and yield management at p < 0.01. A 
farmer who perceives the impact of climate change on 
production is more likely to adopt climate-smart 
agricultural technologies by 19.7%, 13.3%, and 14.0% 
more, respectively, compared to those who do not 
perceive the effects of climate change. The impact of 
environmental stresses and climate change on the 
probability and extent of the application of climate-smart 
agricultural practices might depend on the costs and 
characteristics of the techniques applied. The government's 
role is to assist farmers in having a substantial impact on 
the probability and application of climate-smart 
agricultural practices (Kassie et al., 2013; Nyanga, 
Johnsen, & Aune, 2011). 
 
Farmland tenure has a positive and significant correlation 
with the likelihood of choosing soil and water management 
at p < 0.1, relative to the referenced category. Having a 
land ownership certification can increase the probability 
of adopting soil and water management by 5.0% over 
those households that lease farmland. Carolan (2005), 
Nkonya, Schroeder, and Norman (1997), and Polson and 
Spencer (1991) concluded that farmers who cultivate on 
leased land tend to be less likely to apply technological 
advances than farmers who own property.  
 
Constraint to markets is negatively and significantly 
correlated with the household’s decision to pursue yield 
management at p < 0.01. A one-kilometre increase in the 
distance to the agricultural input/output market can 
decrease the probability of using yield management 
measures by 2.1%. Input markets allow farmers to 
acquire the inputs they need, such as different seed 
varieties, fertilisers and irrigation technologies. Access to 
output markets provides farmers with positive incentives 
to produce cash crops that can help improve their 
resource base and hence their ability to respond to 
changes in climate. Farmer's accessibility to input and 
output markets effect on the transaction costs and then 

effect on the likelihood of climate-smart agriculture 
adoption (Dimara & Skuras, 2003; Neill & Lee, 2001; 
Pretty, Toulmin, & Williams, 2011). 
 
This study has certain limitations. First, the study has 
considered only farmers’ adoption of climate-smart 
agriculture measures as the dependent variable in the 
research model. Other alternative variables such as 
farmer perception, or/and extent in the adoption of 
climate-smart agricultural technologies and the efficiency 
of climate-smart agriculture have not been considered in 
this study. Secondly, the data sets were collected only in 
the Mekong Delta area by surveying rice farmers; 
therefore, the model might not fit other regions of the 
country at large. Future studies should concentrate on 
other areas and different types of agricultural cooperative 
models. 
 
5. Conclusion 
 
Climate change adaptation practices play a crucial role in 
improving technical efficiency, economic benefits, and 
food security. Farmers play a significant role in the 
agricultural sector’s supply chain, and their adoption 
behaviour concerning climate-smart agriculture will 
determine the sustainability of agricultural development 
for the economy, the environment, and society. Therefore, 
an understanding of factors that restrict farmers in the 
adoption of climate-smart agriculture may become a 
significant question for all stakeholders. A vital issue 
requiring attention at the policy, research, and practice 
levels is the successful adoption and diffusion of climate-
smart agricultural technological innovations. Based on 
survey data of 350 rice farmers in the Mekong Delta, this 
study analysed the factors that determine the probability 
of adoption of climate-smart agriculture among 
Vietnamese rice farmers using a multinomial logit model. 
The estimation results indicate that the likelihood of 
climate-smart agricultural technology adoption is 
affected by perceived climate change, a higher education 
level, larger farm size, access to credit, strong social 
capital, access to extension, secure farmland tenure, and 
lower constraints to market entry. 
 
The education level of the household was found to be 
positively and significantly correlated with weather-risk 
management, soil and water management, and yield 
management. Providing more training about climate 
change to farmers through the extension service system 
can build resilience and increase knowledge of climate-
smart agricultural technologies and climate change. 
 
Farmland size appears to be positively and significantly 
correlated with weather-risk management, soil and water 
management, and yield management. Farmland tenure 
has a positive and significant correlation with the 
likelihood of choosing soil and water management. 
Implementation of the 2013 Vietnamese Land Law, 
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taxation policies and agricultural, forestry, and fishery 
extension activities should be directed toward restructuring 
the agricultural sector to increase productivity through 
transitions to higher-value products and strengthened 
value chains for farmers' products. 
 
Access to credit showed a positive and significant 
correlation with soil and water management and yield 
management. Public investment in terms of quantity, 
level, and effectiveness of climate-smart agricultural 
practice projects in rural areas needs more attention, and 
there is a need to pay attention to specific characteristics 
of each locality and region to make investment solutions 
effective. 
 
Social capital is positively and significantly correlated 
with the household decision to adopt soil and water 
management and yield management. The quality of 
social capital can be improved through investing in 
effective operations of the local organisations such as the 
farmer's association, agricultural cooperatives, farmer 
collaboration groups, and large-field and production-
trade linkage models. Collective action is treated as a 
significant adaptation decision regarding the management 
of agricultural and other resources in support of the 
community co-adapting to climate change. 
 
Extension contact sources have a positive and significant 
correlation with the likelihood of choosing soil and water 
management and yield management. Agricultural 
extension staffs can improve the effectiveness of 
agricultural extension activities and strengthen and foster 
knowledge about agricultural development policies. 
 
Household perceptions of the impact of climate change 
were found to be positively and significantly correlated 
with the choice of weather-risk management, soil and 
water management and yield management. A focus on 
marketing and disseminating awareness and information 
about climate change in the community can promote 
participation in resource management. Farmers’ sense of 
usefulness can be increased through disseminating 
information about the economic, social, and environmental 
effects of climate-smart agricultural practices in mass 
media. 
 
Constraints to market access are negatively and 
significantly correlated with the household’s decision to 
pursue yield management. Building necessary 
infrastructure for production, such as in-field lanes, 
irrigation canals, roads, and electrical systems, will have 
a massive impact on the entire community. 
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