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Abstract

All countries affected by the COVID-19 pandemic have established several policies to control the spread of the disease.
The government of Indonesia has enforced a work-from-home policy and large-scale social restrictions in most regions
that result in the changes in community mobility in various categories of places. This study aims to (1) investigate the
impact of large-scale restrictions on provincial-level mobility in Indonesia, (2) categorize provinces based on mobility
patterns, and (3) investigate regional socio-economic characteristics that may lead to different mobility patterns. This
study utilized Provincial-level Google Mobility Index, Flight data scraped from daily web, and regional characteristics
(e.g., poverty rate, percentages of informal workers). A Dynamic Time Warping method was employed to investigate
the clusters of mobility. The study shows an intense trade-off of mobility pattern between residential areas and public
areas. In general, during the first 2.5 months of the pandemic, people had reduced their activities in public areas and
preferred to stay at home. Meanwhile, provinces have different mobility patterns from each other during the period of the
large-scale restrictions. The differences in mobility are mainly led by the percentage of formal workers in each region.

Keywords: COVID-19; time series clustering; large-scale social restrictions; Google Mobility Index; commu-
nity mobility; Indonesia

JEL classifications: A11; C38; J6; R11

1. Introduction

The declaration of the new outbreak of COVID-19
as a global pandemic by World Health Organiza-
tion (WHO 2020) has affected the whole world,
not only in terms of public health, but also econ-
omy and other aspects. Globally, as of 10:34 am
CEST, July 29, 2020, there had been 16,523,815
confirmed cases including 655,112 deaths reported
to WHO. COVID-19 affects 213 countries and terri-
tories around the world.

In Indonesia, the government announced the first
case of the corona virus in early March 2020.
According to the COVID-19 National Task Force
of Indonesia, up to July 29, 2020, there were
4,975 people died, 62,138 people recovered, and
104,432 cases confirmed (the COVID-19 National

∗Corresponding Address: Politeknik Statistika STIS, Jln.
Otista 64C Jakarta 13330. Email: setia.pramana@stis.ac.id.

Task Force, 2020). All 34 provinces have been af-
fected and reporting confirmed cases and deaths.
The province with the highest number of con-
firmed cases of COVID-19 is East Java (21,125
cases (20.7%)), followed by Jakarta (19,995 cases
(19.6%)) and South Sulawesi (9,123 cases (8.9%))
(The COVID-19 National Task Force 2020).

The COVID-19 pandemic has led to the disruption
to worldwide activities and forced the citizens to
stay at home. All the affected countries have im-
plemented several policies to contain the spread of
the disease while maintaining their economic condi-
tions. The most common policy is to reduce mobility
in public places by imposing a full lockdown or semi
lockdown policy. However, the lockdown policies
to decrease the spread of COVID-19 have led to
nearly no social and economic activities.

COVID-19 has changed the mobility of people
around the world. By utilizing large-scale smart-
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phone location-derived aggregated mobility data,
Gao et al. (2020) report that human mobility
changes across the United States during the first
months of the pandemic. In addition, Linka et al.
(2020) discuss travel restrictions in Europe in re-
sponse to COVID-19. Saha, Barman & Chouhan
(2020) show major changes in mobility trends of
people over time prior to and subsequent to lock-
down across different categories of places such as
retail stores, groceries, parks, stations, workplaces,
and residential areas. In Italy, a significant reduction
in mobility is reported following the lockdown ordi-
nance by -42% (Cartenì, Di Francesco, & Martino
2020).

The government of Indonesia had enforced a work-
from-home policy for all government employees
starting from March 17, 2020 (the Ministry of Ad-
ministrative and Bureaucratic Reform 2020a). Start-
ing from June 5, 2020, the government employ-
ees could may both from home and at the offices
(the Ministry of Administrative and Bureaucratic Re-
form 2020b). However, Indonesia did not impose
a full lockdown as other countries such as India.
The local governments can enforce large-scale so-
cial restrictions (PSBB) based on the COVID-19
situation in the respective region. Most of the re-
gions in Indonesia implemented this policy, even
though the starting and duration of the restrictions
were different across regions. The first COVID-
19 Epicenter, namely Jakarta, started PSBB from
April 10, 2020 until the end of July. All satellite dis-
tricts around Jakarta then also implemented PSBB.
South Tangerang have started PSBB from April 18,
2020, while Bogor, Depok, and Bekasi from April
15, 2020.

The restrictions results in changes in community
mobility in various categories of places, includ-
ing residential areas, workplaces, groceries, re-
tail stores, parks, and transit stations in Indonesia.
Furthermore, to prevent the disease transmission
among regions, the government of Indonesia had
closed the borders and suspended the bus, train,
and flight services. The number of flights across
Indonesia had been also reduced significantly to

stop the spread of the disease.

People in several regions seem to respond to the
large-scale social restrictions by the government
differently. These differences may be caused by the
number of positive cases and the socio-economic
characteristics of the region.

This study aims to (1) investigate the impact of
policies on work from home and large-scale restric-
tions on provincial-level mobility in Indonesia and
the number of flights between regions, (2) catego-
rize provinces based on mobility patterns, and (3)
investigate regional socio-economic characteristics
that may lead to different mobility patterns during
work-from-home period and large-scale social re-
strictions period.

This study provides new insight and literature in
terms of changes in population mobility during the
COVID-19 pandemic in Indonesia and the factors
driving the differences in mobility patterns. These
findings will be significantly relevant to the current
condition and become a reference material in the
future. In addition, this study also provides insight
from the use of existing data as well as the condi-
tions of several regions during the pandemic in an
effort to formulate policies.

2. Literature Review

People mobility analysis is usually related to ur-
ban planning programs, such as the development
of green areas to improve wellbeing (Ferrara et al.
2018) and studies of travel demand to provide a bet-
ter transportation system (Demissie et al. 2019). Hu-
man mobility also contributes to disease transmis-
sion, as mentioned by Findlater & Bogoch (2018)
that greater human mobility will lead to the increase
in the frequency of infection as well as the range of
spread. During the COVID-19 pandemic, commu-
nity mobility patterns become considerably impor-
tant to be investigated accordingly. They will assist
in informing national and regional authorities in pro-
moting acceleration projects to stop the outbreak.
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According to Jiang et al. (2017), mobility behavior
can be captured simply using location-awareness
devices, such as smartphones and GPS-enabled
devices. These means of communication can pro-
vide geographical position and even social connec-
tion that will enable researchers to conduct com-
prehensive studies of the movement of the com-
munity in the targeted locations (Ebrahimpour et al.
2020). Google has utilized this advanced technol-
ogy responsively to present reports on community
mobility in response to the COVID-19 pandemic.
People who have Google Account and activate their
location history setting are selected as the objects
of the studies of mobility.

Referring to a study by Moritz et al. (2020) regard-
ing the effects of human mobility on controlling the
COVID-19 pandemic in China, this study generates
several basic assumptions. The ongoing spread of
the pandemic can be controlled indirectly provided
that mobility can be controlled. This is due to the
characteristic of the COVID-19 virus that spreads
rapidly through massive contact. In the areas out-
side of Wuhan where protocol tightening is still lack-
ing, there remains an increase in the number of
cases. This underlies the initial assumption about
the effect of the pandemic on mobility in the affected
areas. The change in mobility is none other than
the result of the response to handling COVID-19.

Referring to a research on population mobility by
MacPherson et al. (2009), it is concluded that lim-
iting mobility and also the effects of globalization
that facilitates mobility from time to time can control
the existence of criminal acts or even the spread
of disease. The limitation in this research refers to
restricting population mobility to form resistance to
drugs.

In fact, mobility is also affected by the characteris-
tics of the area. Referring to a research by McGrath
(2020), population mobility proxied through Google
Mobility is one of the supplements to existing eco-
nomic indicators. This supplement can be a support
for data series or data for each region. Thus, this
will lead to a different response regarding the mobil-
ity restriction policy implemented. The differences

in regional characteristics will certainly result in the
differences in the response to the pandemic.

Based on ASEAN policy brief (2020), the COVID-
19 pandemic has disrupted economic activities and
upended lives, reducing growth prospects world-
wide. The AMS has launched various measures
to counter the effects of the pandemic across the
region, including stimulus measures such as tax
breaks, subsidies including targeted support and
cash assistance, and moratoriums on loan pay-
ments and pension contributions. Central banks
have also lowered interest rates, reduced reserve
requirements, and purchased government bonds.
The pandemic may lead to long-term and consider-
able economic implications.

In a study by Pramana et al. (2020), there are also
signs of a decrease in the level of mobility at sev-
eral regional points in Indonesia. This decrease is
based on a significant reduction in pollution levels
at the beginning of March 2020. This is also based
on the contribution of motorized vehicles to the air
quality of an area. These signs are also an indirect
response to the ongoing pandemic conditions.

3. Method

3.1. Data Source of the Study

The data in this study were collected from different
sources. To study the mobility of people, Google Mo-
bility Index was applied. The number of confirmed
cases of COVID-19 was obtained from the COVID-
19 National Task Force of Indonesia. Regarding
regional characteristics, the study utilized the fol-
lowing variables obtained from Statistics Indonesia
(BPS): poverty rate, unemployment rate of informal
workers, Human Development Index, and regional
GDP. The following section shall briefly describes
these variables. Meanwhile, based on data avail-
ability the levels studied in the analysis are national
and provincial levels.
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3.1.1. Google Mobility Index

Google supplies users with a regularly updated
global mobility dataset accessible at https://www.
google.com/covid19/mobility/. In collecting data,
Google Mobility Index uses tags given by mobile
phone users. This report is generated with an
anonymized and aggregated dataset from users
who have the Location History setting turned on (it
is off by default). This figure represents changes
in percentage over time people visit (or time spent
in) different categories of places compared to base-
line days. This regularly updated dataset shows
the changes in the movement of people during the
pandemic.

Based on the similarities of characteristics adher-
ing to the purpose of social distancing, Google has
grouped the visited places into 6 categories as fol-
lows: (1) workplaces; (2) residential areas; (3) retail
shops and recreational areas, including restaurants,
cafes, shopping centers, theme parks, museums,
libraries, and movie theaters; (4) grocery stores and
pharmacies, including grocery markets, food ware-
houses, farmer’s markets, specialty food stores, and
drug stores; (5) parks, including national parks, pub-
lic beaches, marinas, dog parks, plazas, and public
gardens; and (6) transit stations, including public
transport hubs such as subway, bus, and train sta-
tions.

Baseline days consist of 7 individual values repre-
senting normal mobility on every single day of the
week. The baseline days are constructed using the
median values of the mobility of people from Jan-
uary 3 to February 6, 2020, by eliminating seasonal
effects. It should be taken into consideration that the
same number of visits on two different days can re-
sult in different percentages. Therefore, comparing
day-to-day changes should be avoided.

This study utilized Google Mobility Index of all 34
provinces in Indonesia from February 15 to June
30, 2020. It is available in the public domain (https:
//www.google.com/covid19/mobility/).

3.1.2. Flight Data

Flight data were collected using the web scraping
method from the Flight status site. The web scrap-
ing (Mahto & Singh 2016) was employed using the
Scrapy library (Kouzis-Loukas 2016) in the Python
programming language. The data were collected
daily by collecting flight data on the previous day as
the site stores a history of flight data for the previ-
ous three days. The data of the previous day were
collected to ensure that the status of the captured
flight data remains the final status of the flight, for
example arriving or canceled (Panuntun & Pramana
2021).

3.1.3. Poverty

Head Count Index (HCI-P0) is the percentage of
the population below the Poverty Line. Poverty Line
is the sum of the Food Poverty Line (FPL) and Non-
Food Poverty Line (NFPL). Residents who have an
average per capita expenditure per month below
the Poverty Line are categorized as poor people.
The poverty level used in this study was the latest
poverty level of March 2020.

3.1.4. Unemployment Rate

The unemployment rate is the percentage of unem-
ployment in the total labor force. The unemployed
consist of: those who do not have a job and are look-
ing for a job, those who do not have a job and are
preparing for a business, those who do not have
a job and are not looking for a job because they
feel it is impossible to obtain a job, or those who
already have a job but have not started working.
The unemployment rate used in the study was the
unemployment rate of February 2020.

3.1.5. Regional GDP

Gross Regional Domestic Product at market price
is the total gross value added arising from all eco-
nomic sectors in a region. Value added is a combi-
nation of factors of production and raw materials in
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the production process. The value added is calcu-
lated by subtracting the intermediate costs from the
value of production (output). Gross value added in
this regard includes factors of income (wages and
salaries, interest, land rent and profits), deprecia-
tion, and net indirect taxes. Thus, by adding up the
gross value added of each sector and adding up
the gross value added of all these sectors, a Gross
Regional Domestic Product will be obtained at the
market price. This study used the Q1 Regional GDP.

3.1.6. Human Development Index (HDI)

HDI explains how residents can access the results
of development in obtaining income, health, edu-
cation, and others. The index was introduced by
the United Nations Development Program (UNDP)
in 1990 and is published regularly in the annual
Human Development Report (HDR). HDI is formed
by three basic dimensions: Long and healthy life,
Knowledge, and Decent standard of living. The anal-
ysis was based on the 2019 HDI.

3.1.7. Formal Worker Rate

Formal workers include those conducting business
with the assistance of permanent workers and la-
borers/employees, while the rest are included as in-
formal workers. Currently, BPS determines the pop-
ulation working in the formal/informal sector based
on the status of their main occupation. The formal
worker rate is the percentage of the number of for-
mal workers to total workers. This study used the
formal worker rate of September 2019.

3.2. Data Analysis

An exploratory data analysis was used to obtain an
insight into the movement of the people of Indonesia
before, during, and after work-from-home period
and large-scale social restrictions. The work-from-
home (WFH) policy for all government employees
started from March 17 to May 31, 2020. Meanwhile,
study-from-home policy for all students started from
March 17 to an unspecified time.

Even though the WFH policy for public services is
defined by the central government, local govern-
ments can regulate their policies on social restric-
tions. Moreover, as provinces in Indonesia are quite
diverse in terms of area and socio-economic situa-
tions, the response of the people to pandemic may
be different, leading to different mobility patterns.

3.2.1. The Differences in Residential Areas

To observe how people tend to stay at home,
we calculated the difference between the average
Google Mobility Index during WFH period (March
17–June 31, 2020) and before WFH period (Febru-
ary 15–March 16, 2020).

3.2.2. Average Positive Cases of COVID-19 per
Day

Changes in the number of confirmed cases of
COVID-19 are the average number of positive
cases added per day from a region i in the span of
time n:

avg.positive.perdayi =

n∑
j=1

positivei,j+1 − positivei,j
n

.

(1)

3.2.3. Dynamic Time Warping Clustering

To investigate these differences, a time series clus-
tering was implemented. Dynamic time warping
(DTW) is one of the algorithms in time series analy-
sis to measure the similarity between two temporal
sequences. For example, the similarity in the driv-
ing pattern can be detected by using DTW, even if
one person drives faster than another, or if there is
acceleration and deceleration during observation.
In general, DTW is a method that calculates an opti-
mal match between two given sequences (ex: time
series) with the following restrictions and rules:

• Each index of the first sequence must be
matched with one or more indices from the
other sequence, and vice versa
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• The first index of the first sequence must be
matched with the first index from the other se-
quence (but not necessarily the only match)

• The last index of the first sequence must be
matched with the last index from the other se-
quence (but not necessarily the only match)

• The mapping of the indices from the first se-
quence to the indices from the other sequence
must increase monotonically, and vice versa,
i.e., if j > ij > ij > i is the index of the first sequence,
then there should not be two indices l > kl > kl > k in
another sequence, thus index iii is matched with
index lll and index jjj is matched with index kkk, and
vice versa.

Figure 1. Euclidean Matching and Dynamic Time
Warping Matching

Figure 1 illustrates the difference between Euclid-
ian matching and Dynamic Time Warping (DTW)
matching. It is evident that these two series follow
the same pattern, but the blue curve is longer than
the red. The Euclidian matching (one-to-one match-
ing) is not perfectly synced and the tail of the blue
curve is being left out. Meanwhile, DTW overcomes
the issue by developing a one-to-many match, al-
lowing the troughs and peaks with the same pattern
to be perfectly matched, and there is no left out for
both curves.

When determining the DTW distance between two-

time series, first an (n×m) local cost matrix (LCM)
is calculated, where the elements (i, j) contain the
distance between xi and yj. This distance is usually
defined as the quadratic difference: d(xi, yj) = (xi−
yj)

2. Next, a warping path W = w1,w2, . . . ,wk is
determined, where max(n,m) ≤ K ≤ m+n−1. This
path traverses the LCM under three constraints:

• Boundary condition: The path must start and
end at the diagonal corners of the LCM : w1 =

(1, 1) and wk = (n,m)

• Continuity: Only adjacent elements in the ma-
trix are allowed for steps in the path. This in-
cludes adjacent diagonal elements. Therefore,
supposing wq = (i, j), then wq+1 is either of
the elements (i + 1, j), (i, j + 1) or (i + 1, j + 1)

for q = 1, ...,K − 1 and i = 1, ...,n − 1 and
j = 1, ...,m− 1.

• Monotonicity: Subsequent steps in the path
must have a monotonic time interval. In the ex-
ample in constraint 2, this can be observed by
the fact that indices i and j must not decrease
in the subsequent steps.

The total distance for path W is obtained by sum-
ming the individual elements (distances) of the LCM
that the path traverses. To obtain the DTW distance,
the path with minimum total distance is required.
This path can be obtained by an O(nm) algorithm
based on dynamic programming (DP). The follow-
ing DP recurrence can be used to find the path with
minimum cumulative distance:

dcum(i, j) = d(xi, yj) + min{dcum(i− 1, j− 1),

dcum(i− 1, j),dcum(i, j− 1)}. (2)

We obtained the DTW distance by summing the
elements of the path with minimum cumulative dis-
tance. In the literature, different scales of this sum
are taken to be the DTW distance. We used the
definition from Górecki (2018) and thus took the
root of the sum:

dDTW(x, y) = min

gffe K∑
k=1

wk), (3)
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where wk is the distance that corresponds to the
kth element of the warping path W. Note that this
distance is equal to the Euclidean distance for the
case where n = m and only the diagonal of the LCM
is traversed. Furthermore, the DTW distance does
not satisfy the triangle inequality, even when the
local distance measure is a metric (Micó & Oncina
1998).

To find the most optimal number of clusters, we first
used a dendrogram. Then, we calculated dissimilari-
ties using minimal Euclidean distance between clus-
ters. Supposing the distance between the clusters
is more than 2.5 standard deviation, the clusters
are considered well divided.

The R software (R Core Team 2014; Pramana et
al. 2017) and Power BI were employed for data
analysis and visualization.

4. Result

4.1. Mobility of People

The first confirmed case of COVID-19 was an-
nounced on March 2, 2020, officially marking the
outbreak in Indonesia. As a result, the government
enforced a new policy starting from March 17, 2020,
in which people should work from home (WFH) in-
stead of work at offices (WO) to control the spread
of the disease in a wider range. This policy has
shifted the mobility behavior of the people substan-
tially. This policy was firstly adopted by the Jakarta
Metropolitan Area (Jabodetabek) as the epicenter
of the pandemic. Later, as the disease spread, more
local governments implemented the WFH policy
based on the situation of their respective region.

As pointed in Figure 2, there is a significant trade-off
between the mobility in workplaces and the mobility
at residential areas following the enforcement of
WFH policy. People tended to spend most of their
time at home, as indicated by positive change in
mobility compared to baseline. Meanwhile, working
activities at the offices have reduced significantly.
The magnitude of the trade-off between both places

is not necessarily equal, in which changes in res-
idential mobility are relatively smaller, as people
already spent most of their day at home even dur-
ing working days prior to COVID-19 pandemic.

Nearly all provinces in Indonesia experienced the
same change in mobility pattern as shown by the
national level. Since working from home becomes a
public requirement, people started conducting most
businesses from home, including remote works and
educational training, to stay safe. Residential mobil-
ity has been more intense (Figure 3) while offices
have become significantly quiet (Figure 4) during
holidays, such as Nyepi, Good Friday, and Waisak.
Nyepi has a considerable contribution to the increas-
ing trend of residential mobility in Bali by 37% and
decreasing mobility in workplaces by 89% com-
pared to baseline. Particularly for the Balinese peo-
ple, this celebration was continued the next day.

The official date for the implementation of large-
scale social restrictions (PSBB) in Jakarta is April
10, 2020. As it coincided with the Good Friday holi-
day, it created a double impetus for the escalation
of residential mobility that reached 15% compared
to baseline. PSBB also influenced human mobility
in the surrounding provinces, namely Banten and
West Java.

Furthermore, Figure 2 shows the change in mobil-
ity for home visits that is completely low compared
to baseline on the first day of Eid al-Fitr (May 24,
2020). It reveals that people spent most of their
time outdoors. They might carry out “halal-bi-halal”,
a cultural habit of visiting relatives to ask for for-
giveness from each other. Prior to this occasion,
people usually buy a large number of various gro-
ceries. During the COVID-19 pandemic, the risk
of disease transmission could not seem to reduce
the passion for shopping as the community mobility
unexpectedly exhibited positive change precisely 5
days prior to the Eid al-Fitr Holiday (Figure 5). Days
prior to the celebration, the community behaved as
if everything was normal. Hazardous things might
happen during their shopping that they should con-
sider health protocol guidelines.
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Figure 2. Mobility Change in Workplaces and Residential Areas

Outdoor activities have been greatly restricted since
the outbreak of the pandemic. The places that po-
tentially have a large number of people gathering
are forcefully closed by the authorities, such as
shopping centers, restaurants, cafes, cinemas, and
libraries. It leads to a significant reduction in mobil-
ity to retail shops and recreational areas compared
to baseline (Figure 6). Immediately following the
Eid al-Fitr, the chance to visit these spots has been
opened wider, particularly when the government
has allowed several shopping centers to operate
their businesses as of June 5, 2020. The continuous
increasing trend offers a prediction that the intensity
of mobility will soon reach the normal condition.

Public transportation is accessible by people at any
time even during pandemic outbreaks. Following
the social distancing and health protocol guidelines,
the number of passengers for every means of trans-
portation is limited consequently. For example, an
online taxi can carry a maximum of 2 passengers
only, and a bus can only carry 50% of its capacity.
These rules, in addition to public concern for the
contagious virus, have prompted a great number of
people to use their own vehicles. Not surprisingly,
the trend of community mobility in transit stations
has turned into a big negative (nearly -70%) com-

pared to baseline in the last April to early May 2020
(Figure 7). However, people have been perpetually
dependent on public transport afterward, mainly
following the reorganization by the government to
work at the offices (WO) since June 5, 2020.

Parks are usually comfortable green areas for phys-
ical exercise and stress relief. In addition to restric-
tions on social activities, the interest of the public to
visit these places has declined along with the deci-
sion to close several parks. Human mobility in terms
of park visits drops seasonally to a significantly low
percentage each weekend (Figure 8). It indicates
that people tended to choose weekdays when they
should visit parks for particular purposes during the
COVID-19 pandemic. They might assume that a few
people come to the parks during weekdays, thus
parks are safer in weekdays rather than weekends.
Since the end of April 2020, this mobility pattern has
shown a quite optimistic sign to reach the normal
state soon.

The COVID-19 outbreak has brought notable
changes in community mobility behavior, particu-
larly in the public areas. Contrary to baseline, com-
munity mobility has shifted (on average) to -15%
in grocery stores and pharmacies, -36% in retail
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Figure 3. Mobility Changes in the Residential Areas by Provinces

Figure 4. Mobility Changes in the Workplaces by Provinces

shops and recreational areas, -34% in parks, and
-52% in transit stations during the WFH period. As
people do nearly everything from home, the mobility
at the residential areas has increased by 16% and
while the mobility in workplaces has decreased by
32% compared to baseline.

June is considered as the beginning of the tran-

sition period in which community mobility tended
to be less restricted. Entering this moment, com-
munity mobility pattern has turned (on average) to
-7% in grocery stores and pharmacies, -25% in re-
tail shops and recreational areas, -23% in parks,
and -43% in transit stations compared to baseline.
Activities at offices are permitted but the number
of workers are limited. It has caused a decline in
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Figure 5. Mobility Changes in Grocery Stores and Pharmacies

Figure 6. Mobility Changes in Retail Shops and Recreational Areas

mobility in workplaces by 21% and an increase in
residential mobility by 13% compared to baseline.

4.1.1. The Factors Related to Mobility Changes
in Residential Areas during the Work-
from-Home Period

Even though in general people in Indonesia tended
to reduce mobility in workplaces and stayed at
home during the work-from-home period and large-
scale restrictions, Figure 2 shows that different
provinces have different mobility pattern changes in
residential areas. These difference may be driven
by the number of daily cases and socio-economic
characteristics of the provinces.

Figure 9 shows the average number of daily new
confirmed cases and the differences in mobility in
residential areas between during and before the
WFH period. The highest difference in mobility is
found in Jakarta, followed by Banten, West Java,
and Bali. People in Jakarta, the epicenter of the
pandemic, and the surrounding provinces tend to
stay at home much longer compared to the baseline
period. The highest average number of daily new
confirmed cases is found in East Java, followed by
Jakarta. Despite the highest number of new cases
(160 positive cases), mobility differences are low. It
seems that the people in East Java tend not to stay
at home during the WFH period, even though the
pandemic is worsening.
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Figure 7. Mobility Changes in Transit Stations

Figure 8. Mobility Changes in Parks

Figure 10 shows that people from provinces with
more formal workers (such as Jakarta and Banten)
tended to stay at home during the WFH period. Fur-
thermore, people in the provinces with lower GRDP
and higher poverty rate seemed not to stay at home
during the WFH period. Formal sector workers can
easily work remotely from home, yet it is not the
case for informal workers. Informal workers typi-
cally do not have secure employment contracts,
thus during the pandemic, many lost their jobs and
discovered other options. It will be more difficult for
people in the regions with more informal workers
and a large poverty rate to stay at home for a long
period.

4.1.2. Time Series Cluster Analysis

Based on the inspection on the dendrogram and
the distance between clusters, five clusters are
the most optimal number. Figure 1 shows that
during the mid-March to June, all provinces in
Indonesia began to experience declining mobility
in recreational and retail areas. The decline is due
to several areas that have closed down large malls
as well as recreational areas to reduce contact with
residents to control the spread of COVID-19. The
regions experiencing a larger drop were Jakarta
and Bali. The decline in Jakarta is associated with
the national first case of COVID-19 identified in
the area. In addition, Jakarta is an area with high
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Figure 9. The Scatter Plot of Average Daily New Confirmed Cases and the Differences in Residential Mobility
During and Before the WFH Period

Figure 10. The Plot of the Percentage of Formal Workers, Differences in Residential Mobility, Poverty Rate,
and GRDP
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mobility and density, causing a high increase in the
number of cases.

The line in Figure 11 shows patterns from all 34
provinces, and the colors show the category of clus-
ter based on a similar pattern across the time span.
The clusters seem to have a similar pattern, though
the magnitude is quite different. In terms of mobil-
ity in retail areas, Jakarta forms a single-member
cluster (cluster 3). Jakarta significantly shows low
mobility during April and May 2020. It peaks in May
2020, a week prior to the celebration of Eid al-Fitr in
Indonesia. Several provinces show a rapid increase
during this week in relation to the preparation for the
celebration. However, people in Jakarta were not
interested in visiting retail and recreational areas.

The regions with the highest decrease in mobil-
ity are clusters 3 (Jakarta) and 5 (e.g. West Java
and Bali). Observed from their characteristics, the
regions in cluster 3 have the highest human de-
velopment index, the highest percentage of formal
workers, and high GRDP, but they also have high
unemployment. This is associated with trade cen-
ters in Jakarta that are classified as high in addition
to the quality of the population dominated by formal
workers. Therefore, these regions tend to avoid haz-
ardous areas such as malls and recreational areas.

Similar to mobility in retail and recreational areas,
mobility in grocery stores and pharmacies starts
to decline in mid-March, as shown in Figure 12.
However, due to the basic needs required during
Ramadan in May, several provinces experience an
increase in mobility and the peak occurs during the
Eid al-Fitr week. Provinces with a majority Muslim
population experience this, however provinces with
a majority of Hinduism and Christianity, such as
Bali and Papua, experience an insignificant impact
(cluster 3). Bali becomes a spotlight since, in June,
nearly all regions have started to return to normal.
It may be caused by the regional pattern that have
started to return to normal, and Ramadan and Eid
al-Fitr lead to an insignificant decrease in mobility
than in March. In other words, they are accustomed
to high intensity, and thus the decrease is not as

significant as the previous decrease. However, Bali
also experiences a slowdown towards normality
due to the decline in tourism sector.

Population mobility in parks, as presented in Figure
13, generally declines from mid-March to April and
starts to increase in May 2020. However, in several
provinces included in cluster 3 (Jakarta, Bali, and
Yogyakarta), the decline is quite significant and it
remains considerably low until June. The decline in
Jakarta is due to the large-scale social restrictions.
Meanwhile, Bali and Yogyakarta are tourist areas,
thus the decline is caused by the massive decline
in the number of tourists.

Following the recommendation of the government
regarding the large-scale restrictions, there is cer-
tainly a significant decrease in mobility in the work-
places, as shown in Figure 14, in all provinces in
mid-March. The enforcement of this social restric-
tions does not appear to be implemented simultane-
ously. The most responsive provinces are those in
cluster 3 (Jakarta, Yogyakarta, and Bali), while the
provinces that tend to response slowly are those in
clusters 1 (e.g., Aceh and North Sumatera) and 4
(e.g., Riau and Jambi). The area with the highest
decrease in mobility is cluster 3, in which the fast
response is given due to the urgent conditions. The
area in cluster 3 with the lowest mobility is Jakarta.
In June, there has been an increase in mobility in
the workplaces on average. This is marked by the
"new normal era" initiated by the government. How-
ever, the area that tends to remain low and even
begins to decline is Bali. This is quite alarming, con-
sidering that tourism in Bali has not been able to be
active.

Figure 15 shows a radar plot of the socioeconomic
characteristics of clusters. The provinces in cluster
3 have a high human development index, a high
percentage of formal workers, and a high GRDP.
Therefore, people in this cluster can choose not to
actively engage in mobility in workplaces and work
from home instead. The readiness to work from
home does require good human resources, hence
the ability of cluster 3 to quickly adapt.
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Figure 11. The Mobility Patterns of Provinces in Retail and Recreational Areas

Figure 12. The Mobility Patterns of Provinces in Grocery Stores and Pharmacies
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Figure 13. The Mobility Patterns of Provinces in Parks

Figure 14. The Mobility Patterns of People in Workplaces
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Figure 15. Radar Plot for Clusters Based on Mobility in Workplaces

Figure 16. The Mobility Patterns of Provinces in Residential Areas
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The decline in population mobility in outdoor areas
will certainly lead to increased mobility in residential
areas in nearly all provinces, as can be observed in
Figure 16. This is inseparable from the policy of the
government on working and studying from home.
However, uniquely there is always a decrease in
mobility in residential areas at the end of the month.
The cluster with the lowest increase in mobility in
the residential areas is cluster 1 (e.g., Aceh, Riau,
and Jambi), while the one with the highest increase
is cluster 3 (Jakarta, Banten, West Java, and Bali).

Figure 17 shows that cluster 1 is an area with low
socioeconomic indicators, while cluster 3 is the op-
posite. This shows that cluster 1 is a reflection of
areas with high informal workers and high poverty
rate. This forces the area to exercise high mobility
in workplaces.

4.2. Mobility between Regions

4.2.1. Domestic Flight

The conditions of domestic flight for the 15 busiest
airports in Indonesia are divided into two types
of flights, namely domestic departures from 15
airports and domestic arrivals to 15 airports. Fig-
ure 18 presents a graph of the number of daily
departures from 15 airports for the period of March
15, 2020–June 30, 2020, with important cut-off
dates related to the COVID-19 pandemic in Indone-
sia.

Figure 18 shows that the number of domestic de-
partures from 15 airports tends to decrease from
mid-March until Large Scale Social Restrictions
(PSBB) in several regions in Indonesia. The three
airports with the most decrease in the number of
departures are Soekarno Hatta International Air-
port in Jakarta, Juanda International Airport in
Surabaya, and Sultan Hasanuddin International Air-
port in Makassar, with a decrease of 71.4%, 61%,
and 70.8% respectively.

The most significant decrease in the number of
flights from all 15 airports occurs after April 24,
2020, namely the date of the issuance of the Reg-

ulation of the Minister of Transportation No. 25 of
2020 concerning Transportation Control during the
Eid al-Fitr to prevent the distribution of COVID-19.
The regulation prohibits mass transportation from
carrying passengers, including air transportation
whose operational activities were restricted until
May 31, 2020. The average number of daily do-
mestic departures from 15 airports in the period of
the issuance of the regulation is 24 flights per day,
a drastic decline from average daily departures of
345 flights prior to the regulation.

Referring to Figure 18, it is evident that following the
end of the regulation on May 31, 2020, the number
of daily flights starts to increase. The average num-
ber of daily domestic departures from 15 airports
in June 2020 is 178 flights per day, or an increase
of 741% from the period when the regulation came
into effect. Table 1 shows the average number of
domestic departures from the five airports with the
highest share in each period.

Similar to the conditions of departure flights, arrival
flights to the 15 busiest airports in Indonesia have
also tended to decline since mid-March 2020. The
decreasing and increasing trend of daily arrivals
are also similar to that of the departure flights as
presented in Figure 19.

The number of daily domestic arrivals starts
to decrease since mid-March 2020. Until April
23, 2020 (prior to the implementation of the
regulation of transportation restrictions), the biggest
decrease occurs at Soekarno Hatta International
Airport in Jakarta, Juanda International Airport in
Surabaya, and Sultan Hasanuddin International
Airport in Makassar by 72.5%, 60.9%, and 71.2%,
respectively. The most significant decrease also
occurs when the regulation on transportation
restrictions was issued on April 24, 2020. During
that period, the average number of daily arrivals to
15 airports is 25 flights per day, decreasing from
362 flights per day prior to the issuance of the
regulation. Then, after June 1, 2020, the number
of daily arrivals stars to rise again with an average
number of daily arrivals of 186 flights per day, in-
creasing 744% from the period of the regulation.
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Figure 17. Radar Plot for Clusters Based on Mobility in Residential Areas

Table 1. The Average of Daily Domestic Departures from 5 Airports (March 15–June 30, 2020)

Table 2 shows the average number of daily arrivals
to all airports in each period.

There are also differences between the origin and
destination flight behavior of the five busiest air-
ports in Indonesia for each period as presented in
Figure 20. Observed from the Figure, it can be con-
cluded that there are no significant differences in
flight behavior of the five airports before and after
the implementation of the regulation of transporta-
tion restrictions on April 24, 2020.

4.2.2. International Flights

Figure 21 shows daily international departures from
the 15 busiest airports during the period of March
15, 2020–June 30, 2020, with important cut-off
dates related to the COVID-19 pandemic in Indone-
sia. It demonstrates that international departure
flights from 15 airports in Indonesia have decreased
sharply from mid-March to early April 2020. The
two airports that become the main gate of interna-
tional flights in Indonesia, namely Soekarno Hatta
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Figure 18. The Number of Domestic Departures from 15 Airports in Indonesia (March–June 2020)

Figure 19. The Number of Domestic Arrivals to 15 Airports in Indonesia (March - June 2020)
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Table 2. The Average of Daily Domestic Arrivals to 5 Airports (March 15–June 30, 2020))

Figure 20. Circos Plot of the Five Busiest Airports in Indonesia

Figure 21. The Number of International Departures from 15 Airports in Indonesia (March–June 2020)
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International Airport in Jakarta and I Gusti Ngu-
rah Rai International Airport in Bali, have interna-
tional departures decreased by 71.1% and 64.5%,
respectively. In contrast to domestic flights, interna-
tional flights are not affected by the Regulation of
the Minister of Transportation No. 25 of 2020 con-
cerning Transportation Control, thus observed from
the graph, there are no significant changes either
before, during, or after the issuance of the regu-
lation. The average international departures from
Soekarno Hatta International Airport in Jakarta and
I Gusti Ngurah Rai International Airport in Bali from
the beginning of April 2020 to the end of June is 9
flights per day.

The top five international destinations from Indone-
sia are Singapore, Kuala Lumpur, Tokyo, Hong
Kong, and Doha. Departure flights to Singapore
and Kuala Lumpur experiences the largest decline
in the number of flights until early April 2020 by
77.8% and 84.4%, respectively. Then, from the be-
ginning of April to the end of June 2020, the average
flights to the two cities are stable at 2 or 3 flights
per day.

5. Conclusion

The study shows extensive changes in community
mobility in all provinces of Indonesia during the
COVID-19 pandemic. In general, during the first
2.5 months of the pandemic, people reduced their
activities in public areas and preferred to stay at
home. In June, the activities tended to be in the new
normal situations. Provinces have different mobility
patterns during the period of large-scale restrictions.
The provinces that are and close to the epicenter of
the pandemic tend to have similar mobility patterns.
Furthermore, the socio-economic characteristics of
the provinces force these differences. Provinces
with a high percentage of formal workers, Human
Development Index, and GDP tend to follow the in-
struction to reduce activities outside the home and
work from home. It is also supported by reducing
mobility between provinces through travel restric-
tions such as closing access between provinces

and limiting number of flights.

In addition, the study shows that by utilizing the
new big data source (e.g. Google Mobility and flight
tracker), it is easier to analyze population mobility
from several locations. Furthermore, the relation-
ship between mobility and the socio-economic char-
acteristics of a region in Indonesia also has quite
a variety of patterns, accommodated by the time
series clustering analysis to observe the diversity
of patterns more concise and easily.
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