The Indonesian Capital Market Review

Volume 1 Number 1 *January*

Article 4

1-30-2009

Are South East Asia Countries Capital Markets Characterized by Nonlinear Structures? An Investigation from Indonesia, Philippine and Singapore Capital Market Indices

Minarnita Yanti Verawati Bakara Universitas Indonesia, verabakara@yahoo.com

Bambang Hermanto Faculty of Economics and Business, Universitas Indonesia, bambang.hermanto@ui.ac.id

Follow this and additional works at: https://scholarhub.ui.ac.id/icmr

Recommended Citation

Bakara, Minarnita Yanti Verawati and Hermanto, Bambang (2009) "Are South East Asia Countries Capital Markets Characterized by Nonlinear Structures? An Investigation from Indonesia, Philippine and Singapore Capital Market Indices," *The Indonesian Capital Market Review*: Vol. 1 : No. 1 , Article 4. DOI: 10.21002/icmr.v1i1.3918

Available at: https://scholarhub.ui.ac.id/icmr/vol1/iss1/4

This Article is brought to you for free and open access by the Faculty of Economics & Business at UI Scholars Hub. It has been accepted for inclusion in The Indonesian Capital Market Review by an authorized editor of UI Scholars Hub.

Bakara and Hermanto: Are South East Asia Countries Capital Markets Characterized by No INDONESIAN CAPITAL MARKET REVIEW

Are South East Asia Countries Capital Markets Characterized by Nonlinear Structures? An Investigation from Indonesia, Philippine and Singapore Capital Market Indices

Minarnita Yanti Verawati Bakara* and Bambang Hermanto

This research paper tries to detect the nonlinear structure in the South East Asia Countries Capital Markets. The capital markets of three South East Asia Countries are chosen: Indonesia, Philippine, and Singapore. Daily return data of Capital Markets composite indices are observed: Straits Times Index (STI) of Singapore Exchange from January 04, 1985 to December 31, 2007, Pilipino Stock Exchange Index (PSEi) of Philippines Stock Exchange from March 1, 1990 to December 31, 2007 and Jakarta Composite Index (JCI) of Indonesia Stock Exchange from January 05, 1988 to December 31, 2007.

Should nonlinearity be found, the outcomes of each observation are compared to analyze the implications of each country in global, regional and local position of their competition in the continuously changing world of interdependency environment. The implications of nonlinearity finding in the three ASEAN countries capital markets to the current issues of AFAS on Financial Services, Harmonization among ASEAN countries capital markets in the ASEAN region and ASEAN integration and liberalization on Financial Services are analyzed.

BDS statistic and R/S Analysis as our tools for nonlinearity testing are applied. Nonlinearity evidences in Jakarta Composite Index, Pilipino Stock Exchange Index and Straits Times Index are found.

Keywords: Brock-Dechert-Scheinkman Statistic, Correlation Dimension, Deterministic Non Linear Dynamic System, Embedding Dimension, Fractal, Hurst Exponent, Rescaled Range (R/S) Analysis

Introduction

South East Asia region should not be ignored especially in term of globalization of investment. Although majority of South

In the global competition the role of

^{*}Correspondence to: Minarnita Yanti Verawati Bakara, Bhakti 2 No.11 Kemanggisan, Jakarta Barat, Email: verabakara@yahoo.com

East Asia countries are developing countries but they have significant economic growth. To accelerate each country growth in this region a free trade area on Financial Services of this region is currently being created through the Association of South East Asian Nations (ASEAN). The ASEAN Free Trade Area on Financial Services agreement to accommodate and facilitate trading freely among ASEAN member countries will be a facility for liberalization and integration of Financial Services among ASEAN member countries. In designing this agreement cautions should be taken on the impact of the agreement by understanding how each country financial market systems had behave and will behave. Failing to understand the system will produce a false policy to be applied to the system. Policy as a system control tool applied inappropriately to the system affects undesired direction of outcome to be controlled. Deepen exploring South East Asia Nations Capital Markets will lead to better understanding of the behavior of the system which might be characterized by nonlinear structure.

Recently there is a trend of rapid growth in foreign investment in Financial Market particularly in stock market. The role of foreign buyers becomes crucial to succeeding securities trading. Liberalization in Financial Markets will facilitate foreign buyers to freely access foreign stock market. For diversification purpose, a continuing growth of internationally oriented financial products has taken place. In the international as well as regional arena, recent developments in many fields especially in information technology progress have increased cross listings of multinational companies in which have impacted stock market. As a result, stock markets have moved toward global integration as well as regional integration in their competition world both globally and regionally. Several empirical studies to

assess degree of integration of international stock markets find strong statistical significant level of global integration leading to reduce benefits from international portfolio diversification. Other studies investigate the increased international interdependence by exploring national stock market crashes find the fall of national stock markets simultaneous and mutually reinforcing. Empirical evidence indicates a slowing down of current growth and possible reduction of international portfolio investment. This leads to questioning the efficiency concept of foreign financial market besides efficiency of national financial market.

Since capital market is an informational driven system the role of information technology progress in accelerating dissemination of information has affected financial market in general and stock market particularly. Nowadays people collect information easily by exploring internet. They gather true or untrue, correct or incorrect, right or wrong, valid or invalid information even without any knowledge and understanding of it. Some people have enough knowledge and time to verify any information acquired. Due to high speed of information changes and its high degree of dissemination most people don't make any verification of information and believe rumors as true material information. How people perceive the information they elaborate will define the decision they make. People's perception of information becomes crucial to determine the direction of finance and economic. Control of disseminated information through internet becomes uneasy due to limitation in legal, rule and policy across countries in term of internet information system.

In examining stock market efficiency most researches rely on linear techniques to find out a hidden structure that makes the movement of stock prices. This technique fails to detect multi dimensional and non linear patterns. Movements in stock prices are stochastic if not a random walk was taken for granted as a common believe for a long time to explain nonlinearity. Recent studies examine the possibility of nonlinearity in financial data. Some studies find the empirical evidence of nonlinear dependencies in financial time series.

Linear methods are related to all regularities of the structure in which small causes lead to small effects and one closed solution will be produced in the outcome. Linear equations lead to exponentially growing or periodically oscillating solution only. Therefore possible causes of irregular behavior in a system are nonlinear and chaos besides random external input. Uncertainty evolves due to irregularities in which there are many possible solutions. Nonlinear equations produce many possible solutions instead of one closed solution. No one closed solution shows non equilibrium. Irregularities are characteristic of most financial and economic data. Financial players behave irrationally due to uncertainty and irregularities. Behavioral finance studies irrational behavior of financial players.

The aim of this research is to answer our research question whether three South East Asia countries capital markets index return series are better described by linear models or composed by nonlinear specifications as evidence of more complex dependence. Investigation of nonlinear dependence in stock market index return is an integral part of informational efficiency investigation. The analysis of nonlinearity and non random walk finding by elaborating market efficiency and behavioral finance in the national stock market will be used for examining globalization of investments and international integration either regional integration or global integration.

The next section provides review related literatures. In section 3 the methodology is outlined. Section 4 presents preliminary descriptive statistics and describes datasets for each index including time frame. The results are presented and discussed in section 5. The paper concludes with a summary and describes the implications in the sixth section.

Literature Review

Some studies (Brock et al., (1987, 1991), Hsieh, (1989, 1991, 1993), Willey, (1992), and Scheinkman and LeBaron, (1989)) on nonlinear dynamics have found evidence that residuals of whitened stock index returns are not IID (independently and identically distributed). Barnett and Chen (1986, 1988), Brock and Sayers (1988), Barnett and Hinich (1992, 1993), Chen (1988), and DeCoster and Mitchell (1991) provided evidence of nonlinear structures. Philippatos et al., (1993) use the Brock's Residual test theorem to uncover the presence of similar nonlinear behavior in ten international indexes. Sewell et al., (1993) document nonlinear dependencies in the stock markets of Hong Kong, Korea, Japan, Singapore and Taiwan. Errunza et al., (1994) identify nonlinear dependencies in the market of Germany, Japan, and the emerging markets of Argentina, Brazil, Chile, India and Mexico. Pandey et al., (1998) study deterministic nonlinearity of major European equity markets and the United States. Abhyankar et al., (1997) test for nonlinear dependence and chaos on the world's four most important stock-market indexes. Empirical evidences on nonlinear dependencies suggest that stock prices may be more predictable than formerly thought (Hinich and Patterson, (1985), Scheinkman and LeBaron, (1989), Peters, (1991, 1994), Hsieh, (1991)).

Previous studies have provided useful information of informational efficiency of financial markets (Atkins and Dyl, 1990 and Ball and Kothari, 1989) but there are very little evidences on the nonlinear dynamics

of the major global markets.

Efficient Market Hypothesis (EMH) followers argue that the market price movements are rational and efficient. The concept of the rational investor was crucial to the EMH. The EMH believes that stock prices reflect all information known. EMH claims that the stock market is driven by purely random unanticipated news. EMH holds that there is no systematic structure exists on stock market. EMH has an independence assumption which says that past information does not affect market activity, once the information is known. The EMH justifies the use of probability calculus in analyzing capital markets. However, if the markets are nonlinear dynamic systems, then the use of standard statistical analysis can give misleading results, particularly if a random walk model is used.

Methodology

In this paper two robust enough tests are implemented for nonlinear testing. The BDS test statistic is defined by: BDS Statistic is applied to test nonlinear dependence. R/S Analysis test is used to test persistence or strong dependence as an indicator of the presence of Long-Term memory.

BDS Statistic (Brock et al. (1987, 1996)) tests for nonlinearity based on the null hypothesis that a data series is Independent and Identically Distributed (IID). The BDS test statistic attempts to overcome shortcomings of the correlation dimension. The BDS statistic is distributed asymptotically normal and avoids the biases of the correlation dimension. BDS statistic test rely on the limiting value of the correlation integral and transforms it into a formal test statistic which is asymptotically distributed as a standard normal variable under the null hypothesis of IID against an unspecified alternative. Brock et al. (1987) derived the estimator variance providing a basis for tests of the IID hypothesis.

Rejecting the null hypothesis of IID is not enough to claim a data series is chaotic

$$W(m,\varepsilon,T) = \sqrt{T} \frac{C(m,\varepsilon,T) - C(1,\varepsilon,T)^m}{\sigma(m,\varepsilon,T)}$$

$$(3.1)$$

$$() = \sqrt{1 + 1} \sum_{m=1}^{m-1} \sum_{m=1}^$$

$$\sigma_{m}(\varepsilon) = 2 \left\{ K^{m} + 2 \left[\sum_{j=1}^{m-1} K^{m-j} C(\varepsilon)^{2j} \right] + (m-1)^{2} C_{1,T}(\varepsilon)^{2m} - m^{2} K C_{1,T}(\varepsilon)^{2m-2} \right\}^{/2}$$
(3.2)

where the correlation integral is defined by:

$$C_m(\varepsilon) = \frac{1}{(T-m+1)(T-m)} \sum_{\forall t,s} I_{\varepsilon} \left(X_t^m X_s^m \right)$$
(3.3)

and $K(\varepsilon)$ is estimated by:

$$K(\varepsilon) = \frac{6\sum_{t < s < r} h_{\varepsilon}\left(\boldsymbol{\chi}_{t}^{m}, \boldsymbol{\chi}_{s}^{m}, \boldsymbol{\chi}_{r}^{m}\right)}{(T - m + 1)(T - m)(T - m - 1)}$$
(3.4)

$$h_{\varepsilon}(i,j,k) = \frac{\left[I_{\varepsilon}(i,j)I_{\varepsilon}(j,k) + I_{\varepsilon}(i,k)I_{\varepsilon}(k,j) + I_{\varepsilon}(j,i)I_{\varepsilon}(i,k)\right]}{3}$$
(3.5)

https://scholarhub.ui.ac.id/icmr/vol1/iss1/4 DOI: 10.21002/icmr.v1i1.3918

where: T = the number of observations

- ε = a distance measure as chosen proximity parameter
- m = the number of embedding dimensions
- C = the Grassberger and Procaccia Correlation integral
- σ^2 = a variance estimated of C (C(m, ε ,T)-C(1, ε ,T)^m)

 $\sigma(m,\varepsilon,T)$ = Statistic deviation standard of correlation integral varied by dimension m

$$(R/S) = \frac{Max_{1\leq t\leq N}\left[\sum_{t=1}^{N} \left(r_t - \bar{r}_t\right)\right] - Min_{1\leq t\leq N}\left[\sum_{t=1}^{N} \left(r_t - \bar{r}_t\right)\right]}{S}$$
(3.6)

where: R/S = a standardized range of cumulative deviations for all N-length sub periods

- t = an integer time increment contained within N
- $r_{t} = the t^{th}$ observation in the series being analyzed
- \dot{S} = the standard deviation of the original series

$$Q_{n} \equiv \frac{1}{\hat{\sigma}_{n}(q)} \left[\max_{1 \le k \le n} \sum_{j=1}^{k} \left(X_{j} - \overline{X}_{n} \right) - \min_{1 \le k \le n} \sum_{j=1}^{k} \left(X_{j} - \overline{X}_{n} \right) \right]$$
(3.7)

$$\hat{\sigma}_{n}^{2}(q) \equiv \frac{1}{n} \sum_{j=1}^{n} \left(X_{j} - \overline{X}_{n} \right)^{2} + \frac{2}{n} \sum_{j=1}^{q} \omega_{j}(q) \left\{ \sum_{i=j+1}^{n} \left(X_{i} - \overline{X}_{n} \right) \left(X_{i-j} - \overline{X}_{n} \right) \right\}$$
(3.8)

and as an evidence of the presence of nonlinear dynamics. The BDS test rejects IID for linear as well as nonlinear processes. The Rescaled Range (R/S) analysis is an indicator of the persistence of a series where the influence of a set of past returns on a set of future returns is effectively captured. The Rescaled Range (R/S) analysis was developed by Hurst (1951). The application of Hurst's technique is explained by Peters (1991). Mandelbrot (1972) suggests using R/S Statistics or the range over standard deviation which is the range of partial sums of deviations of a time series from its mean rescaled by its standard deviation to detect long-range or "strong" dependence. R/S analysis can detect nonperiodic cycles that are cycles with periods equal to or greater than the sample period. Longrange dependence can be detected by the "classical" Rescaled Range (R/S) statistic which is given by Eq.3.6.

Howeverthemostimportantshortcoming

of the rescaled range is its sensitivity to short-range dependence, implying that any incompatibility between the data and the predicted behavior of the R/S statistic under the null hypothesis need not come from long-term memory, but may merely by a symptom of shor-term memory (Lo and MacKinlay, 1999). Lo and MacKinlay (1999) suggests using modified rescaled range to distinguish between long-range and short-range dependence by modifying classical R/S statistic so that its statistical behavior is invariant over a general class of short memory processes but deviates for long memory processes Eq.3.7 and Eq.3.8

Since the test has power against many forms of deviation from IID, BDS test is usually carried out on the residuals of a linear and/or GARCH-type filter. This step is known as pre-whitening or bleaching and makes it possible to see if further determinism beyond that described by linear or GARCH process is present in the

data. After data has been pre-whitened and nonstationarity is ruled out, the rejection of the null of IID by the BDS statistic points towards the existence of some forms of nonlinear dynamics.

Besides taking the raw data as comparison, methodology for R/S analysis used by Peters (1991) by taking residual of AR(1) for correcting short-range dependence in R/S analysis is applied in this study rather than using modified R/S analysis suggested by Lo and MacKinlay due to its simplicity in data processing.

Hurst (1951) found that R/S could be estimated by the following empirical relationship referred to as Hurst's Empirical Law:

$$(R/S) = a^*(N)H$$
 (3.9)

The logs of above equation:

$$log(R/S) = H x log (N) + log (a)$$
 (3.10)

where: a = a constant H = Hurst Exponent

H can be estimated by performing an OLS regression between observing log

(R/S) and log (N) for the linear portion of the plot. For short natural memory cycles, R/S estimates would display persistence or anti persistence only for a short length period. H = 0.5 implies a non deterministic process or random process in which the past history does not influence the future of the series. H below 0.5 implies anti-persistent behavior in which a positive trend in a period will be followed by a negative trend in the next period. H above 0.5 implies persistent behavior in which a positive trend will be followed by another positive trend.

This study examines three capital markets of the following countries in the South East Asia Region: Indonesia, Philippine, and Singapore. The data consist of daily closing price indices for the following equity markets: Jakarta, Singapore and Philippine. The Straits Times Index (STI) data from December 06, 1985 to March 15, 2000 were collected from Singapore Exchange -Archived Press Releases of Singapore Press Holding. The Pilipino Stock Exchange Index (PSEi) data from March 1, 1990 to December 31, 2007 were collected from Philippines Stock Exchange. The Jakarta Composite Index (JCI) data from January 05, 1988 to December 31, 2007 were

	J	CI	PS	SEI	STI		
	Index	Return	Index	Return	Index	Return	
	01/04/1988	01/05/1988	02/28/1990	03/01/1990	01/04/1985	01/07/1985	
SAMPLES	- 12/31/2007	- 12/31/2007	- 12/31/2007	- 12/31/2007	- 12/31/2007	- 12/31/2007	
NUMBER OF OBSERVATIONS	5216	5215	4654	4653	5997	5996	
MEAN	625.4506	0.000672	1942.007	0.000272	1587.406	0.000286	
STANDARD DEVIATION	463.3537	0.016917	767.1365	0.015234	655.8818	0.013446	
SKEWNESS	2.337672	3.039809	0.432037	0.475608	0.748393	-1.868788	
KURTOSIS	8.839385	86.7847	2.177641	11.88103	3.888675	54.27394	
MAXIMUM	2810.962	0.403102	3873.5	0.161776	3875.77	0.154812	
MINIMUM	82.6	-0.225811	516.205	-0.097442	456.35	-0.291862	
NORMALITY	12161.38	1533392	275.9238	15466.86	757.1494	660306.2	

 Table 1. Summary of Descriptive Statistics

								Linear and
					Linear Nonline Filter Filter		Nonlinear	nonlinear
m	da	Index	Shuffle	Paturn	Shuffle	Filter	Filter	filter Paturn
- 111	6/0	muex	Shume	Ketuili	Shume	Ketuin	Ketuili	ARMA(1,13)
			Indon		Datum	ARMA	GARCH	&
2	0.25	242 53	-1 2015	24.831	1 8702	(1,165)	(4,2)	GARCH(7,3) 27.167
3	0.25	446.29	-0.65467	37 305	0.65011	39.689	37 308	39.365
4	0.25	895.92	-0 43188	52.005	0.30683	56 547	52.008	55.677
5	0.25	1953.4	-0.0030853	74 639	0.22372	81.887	74 646	80.635
6	0.25	4532.7	0 15102	111 44	0 10899	126.86	111.45	125.4
7	0.25	11009	-0.016235	181.65	-0 13979	209.62	181.66	205 55
8	0.25	27654	-0.070945	312.67	-0.59553	365.44	312.7	355.09
9	0.25	71239	0.15387	551.08	0.042495	658.04	551.13	620.34
10	0.25	187080	-0.20441	1053.5	0.93958	1260.7	1053.6	1149.8
2	0.5	142.95	-0.78674	24.133	1.2814	24.269	24.133	25.228
3	0.5	182.04	-0.23557	32.425	0.51078	32.881	32.425	33.583
4	0.5	239.08	-0.1651	39.913	0.48131	41.219	39.912	41.778
5	0.5	327.95	0.076833	48.921	0.41049	51.303	48.92	51.892
6	0.5	467.29	0.18461	60.429	0.27979	64.89	60.427	65.725
7	0.5	687.34	0.02201	77.91	0.064044	84.594	77.907	85.8
8	0.5	1037.8	-0.23737	103.05	-0.077925	113.71	103.05	114.92
9	0.5	1601	-0.34842	139.18	0.00078243	156.69	139.18	157.86
10	0.5	2513.9	-0.41946	193.56	0.091872	222.03	193.55	223.21
2	0.75	118.85	0.017022	23.558	0.97316	24.468	23.558	25
3	0.75	132.89	0.10552	29.626	0.73478	30.694	29.626	31.095
4	0.75	150.77	-0.10767	34.022	0.84849	35.425	34.022	35.736
5	0.75	176.1	0.018419	38.317	0.79134	40.296	38.317	40.458
6	0.75	211.13	0.16825	42.918	0.60793	45.912	42.918	45.992
7	0.75	258.85	0.0037489	49.209	0.32339	53.385	49.21	53.4
8	0.75	323.49	-0.33698	57.194	0.19678	63.009	57.194	62.945
9	0.75	410.96	-0.50113	67.243	0.25339	75.439	67.243	75.232
10	0.75	529.51	-0.54483	80.495	0.24574	91.732	80.495	91.44
2	1	110.32	0.56845	23.655	0.7752	25.379	23.655	25.508
3	1	116.71	0.17564	28.612	0.72988	30.279	28.612	30.394
4	1	124.61	-0.14395	31.588	0.83798	33.312	31.588	33.457
5	1	136.25	-0.17776	33.915	0.74308	35.869	33.915	35.968
6	1	152.2	-0.055569	36.031	0.50949	38.571	36.03	38.606
7	1	173.12	-0.19768	38.789	0.2655	41.922	38.789	41.897
8	1	199.99	-0.52295	42.071	0.18693	45.963	42.071	45.884
9	1	234.14	-0.75047	45.867	0.24102	50.89	45.867	50.665
10	1	277.35	-0.81771	50.455	0.23565	56.798	50.455	56.471

Table 2. BDS Statistics test for the Jakarta Composite Index

BDS Statistic tabulated value (Brock et al, 1987):										
	Significan	ce Level 5%	Significance Level 1%							
250 observations:	E/SD=0,5	E/SD=1	E/SD=0,5	E/SD=1						
m:										
2	2.35	1.86	3.71	2.79						
3	2.59	1.91	4.04	2.92						
4	3.02	1.98	4.85	2.96						
5	3.88	2.1	6.44	3.06						

Table 3.	BDS	Statistics	test for	The	Pilipino	Stock	Exchange	Index
14010 5.	DDD	Statistics	1001 101	1110	1 mpmo	DIOON	Litenange	mach

m	ε/σ	Index		Shuff	le	Retu	rn	Shuffle		Linear Filter	Nonlinear Filter	Linear and nonlinear filter
				Index				Return		ARMA (119,1)	GARCH (1,8)	ARMA(119,1) & GARCH(6,7)
2	0.25	1	1365.4	(0.65277	11.	919	0.376	53	10.59	11.919	10.59
3	0.25		4851		1.1037	15.	015	0.480	61	13.951	15.013	13.952
4	0.25		20573		1.2441	17.	966	0.3604	46	17.3	17.968	17.301
5	0.25		98546		3.4449	19	9.91	0.494	85	20.033	19.912	20.034
6	0.25	5	10350		2.303	23.	194	1.46	17	23.755	23.196	23.755
7	0.25	27	85700	-(0.23141	30.	055	0.9852	29	30.842	30.058	30.843
8	0.25	157	89000		-11.902	35.	693	2.493	36	43.759	35.696	43.76
9	0.25	920	31000		-14.76	39.	265	-6.30	98	55.881	39.268	55.883
10	0.25	5483	20000		-12.228	30.	655	-5.10	08	68.76	30.658	68.762
2	0.5	8	815.91	-0.	025424	13.	691	0.1734	43	11.68	13.691	11.68
3	0.5	1	1772.5	-0.	039784	17.	317	0.646	12	15.386	17.317	15.386
4	0.5		4312	-(0.46183	20.	699	0.558	85	18.857	20.699	18.857
5	0.5		11557	(0.12025	23	.85	0.191	92	22.043	23.85	22.043
6	0.5		33206	(0.53569	28.	232	0.2612	28	26.425	28.232	26.425
7	0.5	1	00280	(0.89805	33.	618	0.269	84	31.625	33.619	31.624
8	0.5	3	14090	().93919	39.	912	0.3	14	37.375	39.913	37.375
9	0.5	10	11200		1.9961	48.601		0.500	89	44.843	48.602	44.842
10	0.5	33	26400		2.5667	60.225		0.43	54	55.12	60.226	55.119
2	0.75		616	(0.16755	14.395		0.0395	72	12.496	14.396	12.496
3	0.75	1	1017.1	().38888	18.	275	0.8064	48	16.257	18.276	16.257
4	0.75	1	1802.7	-(0.14654	21.:	527	0.866.	33	19.618	21.527	19.618
5	0.75	3	3436.2	-(0.25281	24.442		0.553	77	22.7	24.442	22.7
6	0.75	6	5938.9		-0.2703	28.052		0.573	63	26.526	28.052	26.526
7	0.75		14649	-(0.24326	32.208		0.5294	48	30.842	32.208	30.842
8	0.75		32000	-(0.32732	37.019		0.376	63	35.572	37.02	35.572
9	0.75		71781	-(0.16152	42	2.66	0.258	94	41.233	42.661	41.233
10	0.75	1	64420	0.	083945	49.4	496	0.215	61	48.002	49.496	48.002
2	1	4	491.02	-(0.29963	15.	067	0.1075	56	13.133	15.067	13.134
3	1	(588.22	-0.0	096641	18.	886	0.9354	46	16.597	18.886	16.597
4	1	1	1009.3	-(0.44778	21.	864	1.064	46	19.608	21.865	19.608
5	1	1	1563.3	-(0.61617	24.4	451	0.762	88	22.386	24.451	22.386
6	1	2	2535.6	-(0.68879	27.	346	0.698	11	25.416	27.347	25.417
7	1	4	4270.8	-(0.84812	30.:	569	0.593	76	28.736	30.57	28.737
8	1		7415.4		-1.0531	34.	117	0.417	56	32.268	34.118	32.268
9	1		13195		-1.0615	38.	096	0.207	99	36.2	38.096	36.2
10	1		23953		-1.085	42.	655	0.0871	79	40.508	42.656	40.508
BDS	Statistic	tabulated	Brock et	al. 1987)								
Signific		gnifican	ce Level 5	5%	Significance I		ce I	Level 1%				
250 observations: E/SD=		0,5	E/SD=1		E/S	D=0,5	E	/SD=1]			
m:												
		2		2.35		1.86		3.71		2.79		
		3		2.59		1.91		4.04		2.92		
		4		3.02		1.98		4.85	-	2.96		
		5		3.88		2.1		0.44		3.00		

STI										
								Linear and		
						Linear	Nonlinear	nonlinear		
	,	T 1	Shuffle	Datum	Shuffle	Filter	Filter	filter		
m	ε/σ	Index	Snume	Keturn	Shume	Return	Return	ARMA(1.13)		
						ARMA	GARCH	&		
			Index		Return	(1,165)	(4,2)	GARCH(7,3)		
2	0.25	1235.8	-0.48362	15.993	0.06586	17.997	15.993	17.997		
3	0.25	4120.6	-0.41997	19.21	-0.14706	22.357	19.21	22.357		
4	0.25	16280	0.14199	23.211	-0.38644	26.558	23.211	26.558		
5	0.25	72431	0.36058	27.973	-0.50063	31.906	27.973	31.906		
6	0.25	348030	2.1735	32.976	-0.7366	38.124	32.976	38.124		
7	0.25	1761000	7.5589	39.934	-0.24227	47.135	39.934	47.135		
8	0.25	9248900	12.691	47.258	0.25019	54.824	47.258	54.824		
9	0.25	49954000	13.907	61.776	0.4457	71.962	61.776	71.962		
10	0.25	275650000	-11.107	84.709	1.1456	124.62	84.709	124.62		
2	0.5	839.85	0.1051	18.139	0.1601	18.983	18.139	18.983		
3	0.5	1721.9	-0.19672	22.143	0.025697	23.737	22.143	23.737		
4	0.5	3918.7	-0.63068	26.299	-0.25466	28.177	26.299	28.177		
5	0.5	9779.2	-0.39392	30.664	-0.21711	32.948	30.664	32.948		
6	0.5	26110	-0.10603	35.418	-0.20709	38.215	35.418	38.215		
7	0.5	73193	-0.21739	41.945	0.1055	45.253	41.945	45.253		
8	0.5	212710	-1.0135	49.908	0.3209	53.86	49.908	53.86		
9	0.5	635250	0.71513	60.314	0.67551	64.933	60.314	64.933		
10	0.5	1937800	1.616	72.888	1.1711	78.196	72.888	78.196		
2	0.75	598.55	0.34141	19.484	0.17615	19.835	19.484	19.835		
3	0.75	954.02	0.17613	23.608	0.21979	24.536	23.608	24.536		
4	0.75	1622.8	-0.16208	27.365	-0.043139	28.355	27.365	28.355		
5	0.75	2956.9	0.085111	30.922	-0.12577	32.165	30.922	32.165		
6	0.75	5694.9	0.080174	34.687	-0.26353	36.142	34.687	36.142		
7	0.75	11451	-0.14804	39.391	-0.13131	41.002	39.391	41.002		
8	0.75	23807	-0.16055	44.975	0.066343	46.928	44.975	46.928		
9	0.75	50808	-0.35426	51.66	0.31984	54.156	51.66	54.156		
10	0.75	110700	-0.57523	59.573	0.47045	62.779	59.573	62.779		
2	1	416.36	0.79755	20.449	0.25583	20.754	20.449	20.754		
3	1	561.23	0.32582	24.575	0.42179	25.42	24.575	25.42		
4	1	786.73	0.010056	27.769	0.13853	28.697	27.769	28.697		
5	1	1159.2	0.10149	30.44	-0.026829	31.597	30.44	31.597		
6	1	1783	0.13053	33.11	-0.18896	34.452	33.11	34.452		
7	1	2841.2	-0.22777	36.214	-0.12905	37.697	36.214	37.697		
8	1	4660.5	-0.46625	39.811	0.0062399	41.527	39.811	41.527		
9	1	7827.4	-0.81304	43.903	0.19331	45.943	43.903	45.943		
10	1	13404	-1.1425	48.609	0.25115	51.027	48.609	51.027		
	-									

Table 4. BDS Statistics test for the Straits Times Index

BDS Statistic tabulated value (Brock et al, 1987):									
	Significan	ce Level 5%	Significance Level 1%						
250 observations:	E/SD=0,5	E/SD=1	E/SD=0,5	E/SD=1					
m:									
2	2.35	1.86	3.71	2.79					
3	2.59	1.91	4.04	2.92					
4	3.02	1.98	4.85	2.96					
5	3.88	2.1	6.44	3.06					

compiled from Indonesia Stock Exchange and Thomson Reuters.

To avoid problem showed by Hinich and Patterson (1985) that non-stationarity in time series data may cause a spurious rejection of linearity, the raw data of three time series data Indices: STI, PSEi, and JCI is transformed into return data. The return on each of the series is calculated by:

$$R_{i} = \ln (P_{i} / P_{i-1})$$
(4.1)

where R_i is the log return of the ith time observation.

The summary of descriptive statistics for indexes and their returns is presented in Table 1. All return series are approximately zero mean. Due to non-stationarity all index series are far from zero mean. All series are positively skewed but STI return series is negatively skewed. There is evidence of leptokurtosis in all series but PSEI raw index is platikurtosis. The coefficients of kurtosis for all indices are different from normal distribution. Eventhough different from normal distribution PSEI raw index and STI raw index approach normal distribution. All of the series show strong signs of non normality due to leptokurtosis and skewness. This is a feature of most financial data (Hsieh. 1988). These finding leads to an expectation that the indexes return possess some dependence structure.

Result and Discussion

The results of the BDS tests are given in Table 2, 3 and 4 for each data series for dimensions m=2, ..., 10 and the distance measure $\varepsilon = 0.25\sigma$, 0.5σ , 0.75σ and 1.00σ . A high positive BDS statistic indicates that the probability of any two m histories, (xt, xt-1, ..., xt-m+1) and (xs, xs-1, ..., xs-m+1), being close together is higher in the non random data than in truly random data. This means some clustering occur too frequently in an m-dimensional space and some patterns of stock return movements take place more frequently with non random data than with truly random data. A lower ε value is a more stringent criterion while a higher ε value is the most relaxed one.

We test the return series, the shuffled return series, the filtered return series, the raw index series and the shuffled index series. Since this research concerns with nonlinearity which is the detection of nonlinear dynamics, autocorrelations are filtered out using autoregressive moving average models. The appropriate lag length is determined by the Akaike Information Criterion (AIC) to expect the best fitted model of return series. The return series are filtered to eliminate linear dependence by taking residual of ARMA process. to eliminate nonlinear dependence by taking residual of GARCH process, and to eliminate linear and nonlinear dependence. The return series are scrambled three times to destroy any linear and non linier dependence.

The results in Table 2, 3 and 4 show a summary rejection of the null hypothesis of IID for all series at all dimensions except for shuffled series. For each embedding dimension, BDS test statistic is insignificant for the shuffled series but significant for all raw index series, filtered return series and return series. Rejection of the null hypothesis of IID for raw index series and return series indicates existence of non random processes in the raw index data that might be caused by linear process, stochastic nonlinear process, combine of linear and nonlinear process or chaotic process.

Filtering through a GARCH model which is residual of GARCH model does not reduce the BDS value or change the rejection of the null hypothesis of IID. This indicates that dependence on return series cannot be explained by stochastic non linear model. Filtering through ARMA model for JCI and STI return indexes does not reduce BDS value. For PSEi return, filtering through an ARMA model will reduce the BDS value a little bit but it does not change the rejection of the null hypothesis of IID. Residual of a true stochastic process (linear or non linear) should be random. This means that PSEi return might be created by linear process but since the null hypothesis of IID for the residual of the linear process is rejected thus there remains further dependence in the data that cannot be explained by reference to linear models.

The results of the R/S Analysis can be found in Table 5. Figure 2, 8 and 14 displays the rescaled ranges and V-Statistic for return of JCI, PSEi and STI respectively. V-statistic is used to find the non periodic cycle. In this test, pre-whitening or bleaching will not be applied. Only return series is applied without filtering them since the results of BDS statistic show data series are not affected by linear process. BDS statistic results show stochastic process is not robust enough in the return series and high nonlinearity found in the return series is not generated by stochastic processes.

However Peter's technique by taking residual of AR(1) is applied to correct for short-range dependence. The result of R/S Analysis and V-Statistic of AR(1) residual is shown in Figure 6, 12 and 18 for return series of JCI, PSEi and STI respectively.

Scrambling will destroy the structure of the system and also the long memory process which indicated by drop value of Hurst Exponent H. Figure 4, 10 and 16 displays the rescaled ranges and V-Statistic for shuffled return series of JCI, PSEi and STI respectively. E(H) which is expected R/S values under the random null hypothesis is used as significance test of H. For shuffled return series H will approach and close to E(H) and 0.5. For non scrambled series H will be higher enough than E(H). Non random walk series or non gaussian series will have H above 0.5. Due to insufficiency of scrambling procedure (applied only 3 times) H of index and return shuffle series

might be above E(H).

The objective of forecasting the behavior of index (or prices) makes using return is inappropriate since return whitens data by eliminating serial dependence and makes the data appropriate for linear analysis and independence. Finance and economics have a long tradition of using returns but returns are not an appropriate transformation of prices for research of nonlinear dynamic systems. Using returns complicates the problem dramatically in the other side using prices involves a different problem of continually growing value of assets without bound because of economic growth and inflation (Peters, 1991). Very high H value of index series proves this phenomenon. Therefore raw index series and shuffle index series are also tested. Odd number figures (Figure 1, 3, 5, ..., 17) present the rescaled ranges and V-statistics for index series, shuffle index series and residual AR(1) index series of JCI, PSEi and STI respectively. Due to nonstationarity, H of raw index series is very persistence with a high value of H. Non periodic cycles of Index series are less than return series.

All series show persistence with Hurst Exponent H is less than 0.6 for return series and more than 0.7 for raw index series. Closer values to 0.5 indicate bias caused by (1) the existence of noise and (2) insufficient data caused by insufficient length of data period or over sampling (Peter, 1991 & 1994). STI series has a longest non periodic memory cycle (999 days) and in the other hand PSEi series has a shortest non periodic memory cycle (775 days). JCI has a strongest evidence of temporal persistence dependency with a highest H value of 0.585 and a lowest fractal dimension of return time series (1/H = 1.709) but STI is in the opposite side. JCI return series will last for cycles of approximately 869 days. STI return series show weak persistence and weak nonlinear temporal dependency with Hurst exponent of 0.556 that last for

a longest non periodic memory cycles. Removing short-dependence by taking out AR(1) will drop H to approacing E(H) and 0.5. By comparing the result of AR(1) residual series and shuffle series it can be concluded that there are still dependencies on the residual series although the results show very marginal persistence and very weak nonlinear temporal dependency with Hurst Exponents are below 0.55. Short memory cycle (less than 1000 days) suggest that only short term predictability is possible

Conclusion

The results of this study provide the evidences of nonlinearity in all examined daily raw indexes and returns. Hypothesis of independence for all raw indexes

					J	CI						
Ret	Return		AR(1) dual	Shuffle	Return	Raw	Index	Index Resi	AR(1) dual	Shuffle Raw Index		
Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	
0.585	0.525	0.544	0.525	0.513	0.523	0.794	0.523	0.584	0.525	0.531	0.523	
Non Pe Cy	eriodic cle	Non Pe Cy	eriodic cle			Non Po Cy	eriodic cle	Non Po Cy	eriodic cle			
869 days 2.9390193	= antilog 77644867	869 days 2.939019	= antilog 77644867			237 days 2.374748	= antilog 3460101	869 days 2.939019	= antilog 77644867			
Fract Dime	ional nsion	Fract Dime	ional nsion	Fract Dime	tional ension	Fract Dime	ional nsion	Fract Dime	ional nsion	Fract Dime	ional nsion	
of Time	e Series	of Time	e Series	of Time	e Series	of Time	e Series	of Time	e Series	of Time	e Series	
1.709 (=	1/0.585)			1.949 (=	1/0.513)	1.259 (=	1/0.794)			1.883 (=	1/0.531)	
					PS	SEi						
Ret	urn	Return Resi	AR(1) dual	Shuffle Return		Raw Index		Index AR(1) Residual		Shuffle Raw Index		
Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	
0.566	0.524	0.537	0.524	0.522	0.524	0.779	0.52	0.564	0.524	0.518	0.52	
Non Pe Cy	eriodic cle	Non Pe Cy	eriodic cle			Non P Cy	eriodic cle	Non Po Cy	eriodic cle			
775 days 2.8893017	775 days = antilog 775 days = antilog 2.88930170250631 2.88930170250631		= antilog 70250631			186 days = antilog 2.26951294421792		775 days 2.889301	= antilog 70250631			
Fract Dime	ional nsion	Fractional Dimension		Fract Dime	tional ension	Fract Dime	ional nsion	Fract Dime	ional nsion	Fract Dime	ional nsion	
of Time	e Series	of Time	of Time Series		of Time Series		of Time Series		of Time Series		of Time Series	
1.767 (=	1/0.566)	1.862 (=	1/0.537)	1.916 (=	1/0.522)	1.284 (=	1/0.779)	1.773 (=1/0.564)		1.93 (=1/0.518)		
					S	TI						
Ret	urn	Return Resi	AR(1) dual	Shuffle Return		Raw Index		Index AR(1) Residual		Shuffle Raw Index		
Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	Н	E(H)	
0.556	0.526	0.533	0.526	0.53	0.526	0.797	0.525	0.555	0.526	0.538	0.525	
Non Pe Cy	eriodic cle	Non Pe Cy	eriodic cle			Non Po Cy	eriodic cle	Non Po Cy	eriodic cle			
999 days 2.9995654	= antilog 48822598	999 days 2.9995654	= antilog 48822598			333 days = antilog 2.52244423350632		999 days = antilog 2.99956548822598				
Fract Dime	ional nsion	Fract Dime	ional nsion	Fractional Dimension		Fractional Dimension		Fractional Dimension		Fractional Dimension		
of Time	e Series	of Time	Series	of Time	e Series	of Time	e Series	of Time	e Series	of Time Series		
1.799 (=	1/0.556)	1.876 (=	1/0.533)	1.887 (=	=1/0.53)	1.255 (=1/0.797)		1.802 (=1/0.555)		1.859 (=1/0.538)		

Table 5. R/S Analysis

and returns are rejected which indicates nonlinearity. Even though Hurst exponents of return series have only small value above Hurst Exponent of random walk process R/S analysis shows the existence of persistence temporal dependency in all return series. A high H value shows less noise, more persistence and clearer trends than do lower values. Higher values of H mean less risk because there is less noise in the data (Peters (1991)). Predictability may be feasible in the short term because of short memory cycles are ranging from 775 days for PSEi return and 186 days for PSEi index to 999 days for STI return and 333 days for STI index. Peters (1990) suggests to testing R/S analysis in lower sampling period such as weekly data therefore it is better to rerun R/S analysis for weekly index return series.

Nonlinearity structure found in all return series suggests the stock market of Indonesia, Singapore and Philippine are not efficient or reject EMH model. EMH holds in the efficient capital market, prices reflect all public information.

All series have different degree of complexity which suggests different degree of risk due to their Hurst exponent value. Different degree of risk among international markets as well as among regional markets, in this case among ASEAN member countries markets, provides opportunity of diversification by applying foreign investment in lower risk market. Foreign investment for diversification purpose leads to integration of companies from different countries. Integration as a way to reduce risk by diversification will be more promising to gain competition. Liberalization to invest in less risk foreign countries will be supported by riskier countries. Since each stock market has different complexity, then one policy for all can not be applied. Regional policy to accommodate integration and liberalization will affect differently in each stock markets

References

- Abhyankar, A., Copeland, L., S. and Wong, W. (1997), Uncovering Nonlinear Structure in Real-Time Stock-Market Indexes: The S&P 500, the DX, the Nikkei 225, and the FTSE-100, *Journal of Business & Economic Statistics*, 15, 1-14.
- Akaike, H. (1974), A New Look at Statistical Model Identification, *IEEE Transactions on Automatic Control*, AC-19(6), 716-723.
- Atkins, A. B. and Dyl, E. A. (1990), Price Reversals, Bid-Ask Spreads, and Market Efficiency, Journal of Financial and Quantitative Analysis, 25, 535-547.
- Ball, R. and Kothari, S. P. (1989), Nonstationary Expected Returns: Implications for Tests of Market Efficiency and Serial Correlation in Returns, *Journal of Financial Economics*, 25, 51-74.
- Barnett, William, A., Gallant, Ronald, A., Hinich, Melvin, J., Jungeilges, Jochen, A., Kaplan, Daniel, T. and Jensen, Mark J. (1997), A single-blind controlled competition among tests for nonlinearity and chaos, *Journal of Econometrics*, 82, 157-192.
- Brock, W.A. (1986), Distinguishing Random and Deterministic Systems, *Journal of Economic Theory*, 40, 168-195.
- Brock, W., Dechert, W., and Scheinkman, J. (1987), A Test for Independence Based On the Correlation Dimension, *Working Paper*, University of Wisconsin at Madison, University of Houston, and University of Chicago.
- Brock, W, Hsieh, D. and LeBaron, B. (1991), Nonlinear Dynamics, Chaos and Instability, MIT Press, Cambridge, MA. and London

- Brock, W. A., Dechert, W. D., Scheinkman, J. A., and LeBaron B. (1996), A Test for Independence Based On the Correlation Dimension, *Econometric Reviews*, 15, 197-235.
- Brock, W. A. and Sayers, C. L. (1988), Is the Business Cycle Characterised by Deterministic Chaos? *Journal of Monetary Economics*, 22, 71-90.
- Casdagli, Martin and Stephen, Eubank (1992), Nonlinear Modeling and Forecasting: Addison-Wesley Publishing Company.
- Chen, P. (1988), Empirical and Theoritical Evidence of Economic Chaos, *System Dynamics Review*, *4*, 81-108.
- DeCoster, G. P. and Mitchell, D. W. (1991), Nonlinear Monetary Dynamics, *Journal of Business and Economic Statistics*, 9, 455-461.
- Errunza, V., Hogan, K. Jr., Kini, O. and Padmanabhan, P. (1994), Conditional Heteroskedasticity and Global Stock Return Distributions, *Financial Review*, 29, 293-317.
- Grassberger, P. and Procaccia, I. (1983), Measuring the Strangeness of Strange Attractors. *Physics*, 9-D, 189-208.
- Hinich, Melvin J., and Douglas M. Patterson (1985), Evidence of Nonlinearity in Daily Stock Returns, *Journal of Business and Economic Statistics*, 3, 69-77.
- Hoque, M. (1995), Impetus for Future Growth in the Globalization of Stock Investments: Evidence from Joint Time Series and Chaos Analyses, *Managerial Finance*, 21, 62-75.
- Hsieh, David A. (1988), The Statistical Properties of Daily Foreign Exchange Rates: 1974-1983, Journal of International Economics, 24, 129-145.
- Hsieh, David A. (1989), Testing for Nonlinear Dependence in Daily Foreign Exchange Rates, *Journal of Business*, 62, 339-368.
- Hsieh, David A. (1991), Chaos and Nonlinear Dynamics: Application to Financial Markets, *Journal of Finance*, *5*, 1839-1877.
- Hsieh, David A.(1993), Implications of Nonlinear Dynamics for Financial Risk Management, Journal of Financial and Quantitative Analysis, 28, 41-64.
- Hurst, H.E. (1951), Long-Term Storage Capacity of Reservoirs, *Transaction of the American* Society of Civil Engineers, 116, 770-799.
- Kantz, Holger and Schreiber, T. (1997), Nonlinear Time Series Analysis, Cambridge University Press.
- Lo, Andrew, W. and MacKinlay, A. Craig (1999), A Non-Random Walk Down Wall Street: Princeton University Press.
- Mercado-Mendez, J. and Willey, T. (1992), Testing for Nonlinear Dynamics in International Stock Indices, *Working Paper*, Central Missouri State University.
- Olmeda, I. and Joaquin, P. (1995), Non-Linear Dynamics & Chaos in the Spanish Stock Market, *Investigaciones Economicas*, 19, 217-248
- Pandey, Vivek, Kohers, Theodor and Kohers, G. (1998), Deterministic nonlinearity in the Stock Returns of Major European Equity Markets and the United States, *The Financial Review*, 33, 45-64.
- Peters, E. E. (1991), Chaos and order in the Capital Markets: A new view of cycles, prices, and market volatility: John Wiley & Sons, Inc.
- Peters, E. E. (1994), Fractal Market Analysis: Applying chaos theory to investment and economics: John Wiley & Sons, Inc.
- Philippatos, G. C., Pilarinu, E., and Malliaris, A. G. (1993), Chaotic Behavior in Prices of European Equity Markets: A Comparative Analysis of Major Economic Regions, *Journal* of Multinational Financial Management, 3, 5-24.

https://scholarhub.ui.ac.id/icmr/vol1/iss1/4 DOI: 10.21002/icmr.v1i1.3918

Scheinkman, J. A., and LeBaron, B. (1989), Nonlinear Dynamics and Stock Returns, *Journal* of Business, 62, 311-337.

Sewell, S. P., Stansell, S. R., Lee, I., and Pan, M. S. (1993), Nonlinearity in Emerging Foreign Capital Markets, *Journal of Business Finance and Accounting*, 20, 237-248.

Willey, T. (1992), Testing for Nonlinear Dependence in Daily Stock Indices, *Journal of Economics and Business*, 44, 63-76.

Appendix

Figure 1. R/S Analysis & V-Statistic JCI Index

Figure 2. R/S Analysis & V-Statistic JCI Return

15

57

Figure 3. R/S Analysis & V-Statistics JCI Index Shuffle

Figure 4. R/S Analysis & V-Statistic JCI Return Shuffle

Figure 5. R/S Analysis & V-Statistic JCI Index AR(1) Residual

Figure 6. R/S Analysis & V-Statistic JCI Return AR(1) Residual

Figure 7. R/S Analysis & V-Statistic PSEI Index

Figure 8. R/S Analysis & V-Statistic PSEi Return

Figure 9. R/S Analysis & V-Statistic PSEi Index Shuffle

Figure 10. R/S Analysis & V-Statistic PSEi Return Shuffle

Figure 11. R/S Analysis & V-Statistic PSEI Index AR(1) Residual

Figure 12. R/S Analysis & V-Statistic PSEI Return AR(1) Residual

Figure 13. R/S Analysis & V-Statistic STI Index

Figure 14. R/S Analysis & V-Statistic STI Return

Figure 15. R/S Analysis & V-Statistic STI Index Shuffle

Figure 16. R/S Analysis & V-Statistic STI Return Shuffle

Figure 17. R/S Analysis & V-Statistic STI Index AR(1) Residual

Figure 18. R/S Analysis & V-Statistic STI Return AR(1) Residual

