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Abstract 
 

Background: Most investigators use ordinary least squares (OLS) methods to model low birth weight. When the data are 

non-normal or contain outliers, OLS become ineffective. However, the quantile method of forecasting low birth weight 

has not been fully evaluated, although it has good potential for overcoming problems associated with linear regression. 

Methods: The present study reports our comparison between the OLS and quantile regression methods for modeling low 

birth weight when the data are right skewed and outliers are presented. Additionally, we evaluated the performance of the 

associated algorithm in recovering the true parameter using the bootstrap method. Results: Our study found that a 

mother’s education level, the number of maternal parities, and the last birth interval significantly impacted low birth 

weight at any selected low quantile. Based on the bootstrap simulation study, the proposed model was considered to be 

acceptable since both methods generated nearly identical estimates of the parameter model. An accuracy test proved that 

the quantile method was an unbiased estimator. Conclusions: The present study found that low birth weight is 

significantly affected by the mother’s educational level, the number of maternal parities, and the last birth interval. 
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Introduction 
 

Birth weight in humans is described as the weight of an 

infant obtained within the first 60 minutes after birth. 

Birth weight is determined by two major processes: 

length of gestation and intrauterine growth rate.1 Low 

birth weight is defined by the World Health Organization 

as a birth weight < 2500 grams. Low birth weight can be 

caused by either a short gestation period, retarded 

intrauterine growth, or a combination of the two.1,2 It is 

considered to delay child development and carries a 

greater risk of early childhood mortality. Moreover, 

infants with low birth weight also have a significantly 

greater risk of infection, decreased chances of survival, 

higher susceptibility to childhood illnesses, and 

difficulties associated with psychosocial development, 

behavior, and learning during childhood.3 Over the last 

few decades, many studies have investigated the causes 

of low birth weight. Recently, low birth weight and its 

determinants have come under intense global scrutiny. 

 

Conventional regression methods, such as the ordinary 

least squares (OLS) method, are typically used to model 

the factors affecting birth weight. OLS is based on a 

central tendency, which may not appropriately represent 

the reality in cases where the dependent variable ranges 

between the lower and upper values; hence, the 

relationship may not be homogenous across different 

percentiles of the dependent variables. Thus, using OLS 

to estimate the mean may not accurately reflect or 

represent heterogeneity in the estimated relationship. 

However, studies have shown that the resulting estimates 

of various effects on the conditional mean of birth weight 

do not necessarily indicate the size and nature of these 

effects on the lower tail of the birth weight distribution.4,5 

 

A more complete picture of the covariate effects can be 

seen by estimating a family of conditional quantile 

functions. Estimates of conditional quantiles can be used 

overcome any problem associated with the classical 

method (OLS), such as outlier data or heteroscedasticity 

cases, as long as the error distribution of the data has a 

continuous, symmetric, and unimodal density.6,7 The 

quantile regression method is used to estimate the 

relationship at any point of conditional distribution of the 

dependent variable, which generates various estimated 

coefficients at certain quantiles of the dependent 

variable.8−10 The objective of this study is to identify the 

determinants of low birth weight using quantile 

regression. We report a quantile regression model for 
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settings in which significant variables indicate 

scientifically determined variables. Quantile regression 

attempts to divide the response distribution into many 

parts, including estimating conditional quantile 

functions.11−13 
 

Methods 
 

This study utilized primary data collected by 

questionnaire distributions from March through July 

2016. Our sample was limited to mothers who just 

delivered a singleton live birth and were living in West 

Sumatera, Indonesia. In total, 92 respondents with 

complete information were included in the analysis. The 

response variable was the child's birth weight recorded in 

kilograms. Eleven indicator variables were used in this 

study, including continuous and categorical types, i.e., 

mother’s education, mother’s job, residence, number of 

pregnancy problems, mother’s age, number of parities, 

number of prenatal care visits, mother’s weight gain 

during pregnancy, mother’s hemoglobin (Hb) level, last 

birth interval, and sex of the baby.1  

 

Mother’s education was divided into three levels: low, 

middle, and high level, with the low level considered a 

reference category for interpreting coefficients. Mother’s 

job was classified into three categories: government 

employee, housewife, and other, and residence was 

categorized as urban or rural. The number of pregnancy 

problems was categorized into three types: > 1 problem 

(reference category), 1 problem, and no problem. 

Meanwhile, mother’s age, the number of parities, the 

number of prenatal care visits, mother’s weight gain 

during pregnancy, mother’s Hb level, and last birth 

interval were represented by continuous variables. This 

research has been conducted in full accordance with the 

World Medical Association Declaration of Helsinki.  

 

Figure 1 (a) presents a histogram of the dependent 

variable of 92 birth weights. Distribution of data is 

skewed to the right. Figure 1 (b) demonstrates a normal 

Q-Q plot of the data, indicating a violation of the 

normality assumption in the birth weight data. Summary 

statistics were calculated for all of the selected 

independent variables. Table 1 presents the descriptive 

statistics for all of the continuous independent variables, 

and Table 2 shows the percentage of each category of 

qualitative variables. In the present study, the quantile 

regression approach was used to model low birth weight 

based on the following ideas: 

 

Considering a linear model,14 

 

yi = xi
Tβ + ei, i = 1, … … . , n                                           (1) 

 

where yi is the ith observation, xi is the ith independent 

variable, and ei  is an independent error variable with 

probability density fi. For identifiability, we assume that, 

for a quantile level of interest   (0,1), the conditional 

th quantile of ei  given xi  is zero. The conditional 

quantile regression is as follows: 

 

QY(τ|𝐱) = xTβ(τ)                                                       (2) 
 

where QY(τ|𝐱) represents the th conditional quantile of 

the response Y given x and parameter β(τ)  is an 

unknown functional vector. A point estimate β̂(τ) of the 

parameter β(τ) is obtained by minimizing the objective 

function: 

 

∑ ρτ(yi − xi
T′β)n

i=1                                                       (3) 
 

(a) 

 

 

(b) 
Figure 1. (a) Histogram and (b) normal QQ plot for birth weight 

data 

 
Table 1. Summary statistics for continuous independent 

variables of Birth Weight Data 

 

Variables Mean 
Standard 

Deviation 
Min. Max. 

Mother’s age 29.87 6.58 17.00 45.00 

Parity 2.18 1.19 1.00 7.00 

Last birth interval (year) 2.77 2.86 0.00 14.00 

Mother’s weight gain (kg) 12.65 5.06 2.00 28.00 

Hb 11.27 1.25 7.40 14.30 

Prenatal care 7.64 2.68 1.00 17.00 

Birth weight (kg) 3.06 0.67 1.10 4.50 
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Table 2. Summary statistics for continuous independent 

variables of Birth Weight Data 

Variable Frequency 
Percentage 

(%) 

Maternal education   

Low (Junior high school and below) 20 21.7 

Low (Junior high school and below) 20 21.7 

Middle (Senior high school)  41 44.6 

High (University) 31 33.7 

Mother’s job   

Government employee 13 14.1 

Housewife 59 64.2 

Others 20 21.7 

Residence   

Urban 66 71.7 

Rural 26 28.3 

The number of pregnancy   

> 1 problem 4 4.3 

One problem 31 33.7 

No problem 57 62.0 

Sex of the child   

Female 42 45.7 

Male 50 54.3 

 

where ρτ(. ) denotes the following loss function: 

 

ρτ(u) = u(τ − I(u < 0)) 

            = |u|((1 − τ)I(u ≤ 0) + τI(u > 0))              (4) 

 

and 𝐼. is the usual indicator function. Such loss function 

is then an asymmetric absolute loss function, i.e., a 

weighted sum of absolute deviations, where a (1 − 𝜏) 

weight is assigned to the negative deviations and a 𝜏 

weight is used for the positive deviations.6 

 

We evaluated goodness of fit for these quantile 

regressions using R2 values. The R2 index formulation for 

quantile regression differs from OLS regression since it 

is based on the minimization of an absolute weighted sum 

(not an unweighted sum of squares as in OLS). The R2 

formulation for quantile regression is represented by 

what is typically called a pseudo-R2, which is formulated 

as follows: 

 

Pseudo − R2 = 1 −
RASWτ

TASWτ
                                               (5) 

 

where 𝑅𝐴𝑆𝑊𝜏 is the residual absolute sum of weighted 

differences between the observed dependent variable and 

the estimated quantile of conditional distribution in the 

more complex model, and 𝑇𝐴𝑆𝑊𝜏  is the total absolute 

sum of weighted differences between the observed 

dependent variable and the estimated quantile of 

conditional distribution in the simplest model.4 

 

We evaluated the performance of the quantile method 

and its associated algorithm in recovering the true 

parameter using a simulation study, which was 

performed by applying the bootstrap method.8 The 

bootstrap resampling method is a fully nonparametric 

procedure that is suitable for use in a wide range of 

models and easy to implement. In this method, a new data 

set is generated by sampling with replacement from the 

original data set, and the hypothesis model is fitted to the 

new data set.8,15,16 

 

The estimation of standard errors for parameters was 

obtained by fitting the hypothesis model to the new data 

set.  

 

Previous study7 presented the following procedure to 

perform bootstrap sampling as follows: (1) Generate a 

random sample of size n from the original data denoted 

by X∗ = (X1
∗ , X2

∗ ,    Xn
∗ ) ; (2) For this one bootstrap 

sampling, apply the quantile function estimator to each 

element of X∗  to obtain U∗ = (U1
∗, U2

∗ , … , Un
∗ )  where 

U1
∗ = Q̂(X1

∗); (3) Calculate the statistic of interest Si(U∗); 

(4) Repeat steps 1–3 for B times in order to obtain the 

empirical bootstrap distribution for S(U), for B = 

1,…,reB; (5) Calculate bootstrap parameter average 

value using 
 

β̅̂(τ) =
1

B
∑ β̂b

B
b=1 (τ),                                                  (6) 

 

and bootstrap variance as follows: 

V̂q,j =
1

B
∑ (β̂b,j(τq) − β̅̂b,j(τq))B

b=1 (β̂b,j(τq) − β̅̂b,j(τq))
T

, 

(7) 

where j = 1, rep; q = 1, rek ; (6) Next, construct a 

confidence interval for each conditional quantile 

parameter for the generic jth parameter and the qth 

quantile using the following formula: 
 

β̅̂j(τq)  zα/2SD (β̂j(τq)),                                          (8) 
 

where SD (β̂j(τq)) is a standard deviation of β̂j(τq) or 

the square root of bootstrap variance, V̂q,j. 
 

Results 
 

In this study, the model hypothesis was presented in the 

birth weight equation as follows: 
 

Birth weighti = β1Agei + β2Education (Middle)i +
β3Education (High)i + β4Parityi +
β5Last birth intervali +
β6Weight gaini +
β7Problems (One problem)i +
β8Problems (No problem)i +
β9Hbi + β10Rurali +
β11Femalei+ei;                             (9) 

 

Next, the model hypothesis was fitted to the birth weight 

data. After fitting, four indicator variables were found to 

indicate a statistically significant effect on the response. 

The variable “problems” were excluded from the model 

because they were not statistically significant in any of 

the constructed equations. Table 3 presents the results of 
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conditional quantile regression of low quantiles (at 

quantiles 0.10, 0.20, 0.30, 0.40, and 0.50) and the OLS 

approach for significant variables only. 

 

Our results demonstrate that standard errors from the 

OLS were the highest among the other standard errors for 

the corresponding indicators. At lower quantiles, 0.10, 

0.20, and 0.30, all four indicator variables in the model 

were statistically significant. Meanwhile, quantiles 0.40 

and 0.50 had three significant variables only, with the 

OLS method yielding the same results. In spite of this, 

we could not accept the OLS model as a proposed model 

as it violated the normality assumption and presence of 

outliers in the empirical data. 
 

Table 3. Comparison of coefficients estimated for low birth weight model using quantile regression 
 

Indicator Variable 

  
Estimate of QR (Standard error) 

Estimate of OLS 

(Standard error) 
 = 0.10  = 0.20  = 0.30  = 0.40  = 0.50 

β2 (Middle) 0.391 (0.071)** 0.374 (0.128)** 0.416 (0.167)** 0.186 (0.144) 0.121 (0.143) 0.117 (0.250) 

β3 (High) 0.494 (0.075)** 0.432 (0.137)** 0.518 (0.178)** 0.492 (0.153)** 0.407 (0.152)** 0.531 (0.266)** 

β4 (Parity) 0.207 (0.030)** 0.249 (0.054)** 0.320 (0.071)** 0.401 (0.061)** 0.556 (0.060)** 0.491 (0.106)** 

β5 (Last birth interval) −0.042 (0.012)**− −0.052 (0.022)** −0.059 (0.029)** −0.077 (0.025)* −0.092 (0.024)** −0.091 (0.043)** 
 

* Significant at 10% level 

** Significant at 5% level 

 

Table 4. Pseudo-R2 for selected quantile for low birth weight 

Quantiles Pseudo-R2 

0.10 0.794 

0.20 0.849 

0.30 0.861 

0.40 0.909 

0.50 0.881 

 

Table 5. Bootstrap simulation study results 
 

Parameter Model 𝛽2 (Middle) 𝛽3 (High) 𝛽4 (Parity) 𝛽5 (Last birth interval) 

 = 0.10     

Quantile Method 0.391 (0.071)** 0.494 (0.075)** 0.207 (0.030)** −0.042 (0.012)** 

Bootstrap Method 0.389 (0.056)** 0.478 (0.066)** 0.244 (0.043)** −0.053 (0.025)** 

95% CI Boot (0.297;0.471) (0.383; 0.572) (0.187; 0.321) (−0.105; −0.021) 

Length of 95% CI Boot 0.174 0.189 0.134 0.083 

 = 0.20     

Quantile Method 0.374 (0.128)** 0.432 (0.137)** 0.249 (0.054)** −0.052 (0.022)** 

Bootstrap Method 0.397 (0.085)** 0.489 (0.107)** 0.295 (0.056)** −0.062 (0.026)** 

95% CI Boot (0.265; 0.509) (0.331; 0.666) (0.213; 0.404) (−0.121; −0.025) 

Length of 95% CI Boot 0.243 0.335 0.191 0.096 

 = 0.30     

Quantile Method 0.416 (0.167)** 0.518 (0.178)** 0.320 (0.071)** −0.059 (0.029)** 

Bootstrap Method 0.357 (0.148)** 0.527 (0.149)** 0.375 (0.105)** −0.070 (0.034)** 

95% CI Boot (0.097; 0.588) (0.273; 0.732) (0.248; 0.565) (−0.122; −0.013) 

Length of 95% CI Boot 0.491 0.459 0.316 0.108 

 = 0.40     

Quantile Method 0.186 (0.144) 0.492 (0.153)** 0.401 (0.061)** −0.077 (0.025)* 

Bootstrap Method 0.269 (0.188)** 0.527 (0.211)** 0.468 (0.143)** −076 (0.046) 

95% CI Boot (0.047; 0.604) (0.170; 0.838) (0.263; 0.659) (−0.131; 0.006) 

Length of 95% CI Boot 0.557 0.667 0.395 0.138 

 = 0.50     

Quantile Method 0.121 (0.143) 0.407 (0.152)** 0.556 (0.060)** −0.092 (0.024)** 

Bootstrap Method 0.233 (0.207)** 0.549 (0.216)** 0.548 (0.138)** −0.091 (0.045) 

95% CI Boot (−0.036; 0.616) (0.278; 0.931) (0.328; 0.748) (−0.155; −0.009) 

Length of 95% CI Boot 0.652 0.653 0.420 0.145 
* Significant at 10% level 

** Significant at 5% level 



Applying bootstrap quantile regression   94 

Makara J Health Res.  August 2019 | Vol. 23 | No. 2 

Table 6. Bias of quantile estimation for  = 0.10, 0.20, 0.30, 0.40, and 0.50 
 

Parameter 
 = 0.10  = 0.20  = 0.30  = 0.40  = 0.50 

SD*
Boot Bias SD*

Boot Bias SD*
Boot Bias SD*

Boot Bias SD*
Boot Bias 

β2 (Middle) 0.056 0.010 0.085 0.023 0.148 0.058 0.188 0.083 0.207 0.112 

β3 (High) 0.066 0.016 0.107 0.057 0.149 0.009 0.211 0.035 0.216 0.142 

β4 (Parity) 0.043 0.037 0.056 0.046 0.105 0.055 0.143 0.067 0.138 0.007 

β5 (Last birth interval) 0.025 0.011 0.026 0.010 0.034 0.011 0.046 0.000 0.045 0.000 

SD (Bias) 2.01 x 10-8 0.0002.21 x 10-8 0.0002.21 x 10-8 0.0002.21 x 10-8 0.0002.21 x 10-8 
 

 

Next, we measured goodness of fit of the proposed models. 

Several studies have reported the use of the Pseudo-R2 to 

indicate goodness of fit for each selected quantile.6,17 Table 

4 shows the corresponding Pseudo-R2 values for each 

selected quantile using birth weight data as the response 

variable. The results shown in Table 4 indicate that the 

0.40th quantile is the best among all five nested models, as 

indicated by the highest Pseudo-R2 value. 

 

Although the Pseudo-R2 values for all five lower 

quantiles were within an acceptable range (> 79%), this 

study also investigated the performance of quantile 

regression and its associated algorithm in recovering the 

true parameter. A simulation study was subsequently 

performed using a bootstrap approach. All 50 model fits 

were used to measure standard errors to calculate the 95% 

confidence interval of all parameters in this simulation 

study. The result of the bootstrap estimation method and 

the 95% bootstrap percentile intervals are shown in Table 

5, which reveals that the quantile regression and 

bootstrap models yield almost identical parameter 

estimates. Additionally, all parameter estimates from the 

quantile regression method were within the 95% 

bootstrap percentile intervals, indicating that the 

parameters estimated for all selected quantiles in the 

proposed model were acceptable. Thus, we can conclude 

that the power of this study's quantile regression method 

yields the best fit for the proposed model.18 

 

We also examined the accuracy of the quantile estimation 

method to determine that it is unbiased. Table 6 presents 

the bias estimation results between the quantile and 

bootstrap estimation methods for each low quantile. Bias 

was calculated as the difference between quantile 

estimation and bootstrap estimation. The quantile 

estimation method was unbiased if the standard deviation 

of bias was less than the standard deviation of bootstrap 

distribution. 
 

Discussion 
 

This present study reports on a low birth weight statistical 

model constructed using a quantile regression approach. 

Although many studies have reported on models to 

determine low birth weight, few studies have used the 

quantile approach, particularly considering the mother's 

education level, the number of parities, last birth interval, 

mother's weight gain, Hb level, and the number of 

pregnancy problems.  

These results reveal that the mother’s education level, the 

number of parities, and the last birth interval significantly 

affected low birth weight. Furthermore, a validity test 

used the bootstrap resampling method, with results 

indicating acceptability of the proposed model since it 

yielded identical parameter estimates. All parameter 

estimates of quantile regression were within 95% 

bootstrap percentile intervals. Next, the accuracy of the 

quantile regression method was tested and determined to 

be unbiased. This study revealed that the standard 

deviation of bias (i.e., the difference between quantile 

estimation and bootstrap estimation) was less than the 

standard deviation of bootstrap, which means that the 

parameters estimated for all selected quantiles in this 

study are statistically acceptable. 

 

More research using additional data samples (> 250) is 

necessary to achieve a better model since quantile 

regression itself requires a large data sample.6 In 

addition, the Bayesian approach to quantile regression 

also could be implemented to overcome the need for a 

larger data sample since more data indicate more time 

and more money. The Bayesian method has the ability to 

estimate model parameters even using small data.19 

 

Conclusions 

 

The quantile regression approach is based on its ability to 

enhance the understanding of the low birth weight model, 

where data with outliers are available. Quantile 

regression has the ability to overcome this problem since 

it can assess the association between independent 

variables and outcome in each conditional quantile, 

hence it is applicable for all data with low moderate, and 

high outlier values. The present study demonstrated that 

low, birth weight is significantly affected by mother’s 

education level, the number of parities, and the last birth 

interval. This proposed model could be accepted based 

on validity tests using the bootstrap resampling method. 

All significant parameter estimates from the quantile 

regression were within 95% bootstrap percentile 

intervals. 
 

Acknowledgments 
 

The authors wish to express their special appreciation to 

all the examiners and also to the editors and anonymous 

reviewers whose suggestions made this manuscript much 

improved.  



95     Yanuar, et al. 

Makara J Health Res.  August 2019 | Vol. 23 | No. 2 

Funding 
 

This research is financially supported by Andalas 

University research grant. 
 

Conflict of Interest Statement 
 

None of the authors have a conflict of interest in relation 

to this study. 

 
Received: January 1, 2019 Accepted: May 7, 2019 

 

References 
 

1. Hulmán A, Witte DR, Kerényi Z. Heterogeneous effect of 

gestational weight gain on birth weight: Quantile 

regression analysis from a population-based screening. 

Ann Epidemiol. 2015;25:133−7. 

2. Abrevaya J, Dahl CM. The effects of birth inputs on 

birthweight: Evidence from quantile estimation on panel 

data. J Bus Econ Stat. 2008;26:379−97. 

3. Burgette LF, Reiter JP, Science S, Carolina N. Modeling 

adverse birth outcomes via confirmatory factor quantile 

regression. Biometrics. 2012;68:92−100. 

4. Saputri OD, Yanuar F, Devianto D. Simulation study of 

the implementation of quantile bootstrap method on. 

Cauchy - J Mat Murni dan Apl. 2018;5:95−101. 

5. Muharisa C, Yanuar F, Devianto D. Simulation study of 

the using of bayesian quantile regression in non- normal 

error. Cauchy - J Mat Murni dan Apl. 2018;5:121−6. 

6. Davino C, Furno M, Vistocco D. Quantile Regression 

Theory and Applications. Wiley Series; 2014. 

7. Wei L, Wang D, Hutson AD. an investigation of quantile 

function estimators relative to quantile confidence interval 

coverage. Commun Stat Theory Methods. 2015;44:2107−35. 

8. Galvao A, Montes-Rojas G. On bootstrap inference for 

quantile regression panel data: A monte carlo study. 

Econometrics. 2015;3:654−66. 

9. Olsen CS, Clark AE, Thomas AM, Cook LJ. Comparing 

least-squares and quantile regression approaches to 

analyzing median hospital charges. Acad Emerg Med. 

2012;19:866−75. 

10. Fallah R, Kazemnejad A, Zayeri F, Shoghli A. Birthweight 

related factors in Northwestern Iran: Using quantile 

regression method. Glob J Health Sci. 2016;8:116−25. 

11. Wei Y, Carroll RJ. Quantile regression with measurement 

error. J Am Stat Assoc. 2009;104:1129−43. 

12. Feng X, Zhu L. Estimation and testing of varying 

coefficients in quantile regression. J Am Stat Assoc. 

2016;111:266−74. 

13. Fosdal S. The use of logistic regression and quantile 

regression in medical statistics. 2017. 

14. Spyroglou I, Gunter S, AC CE, AG R, Paraskakis E. A 

bayesian logistic regression approach in asthma 

persistence prediction. Epidemiol Biostat Public Health. 

2018;15:1−14. 

15. Yanuar F. The estimation process in bayesian structural 

equation modeling approach. J Phys Conf Ser. 2014; 

16. Feng X, He X, Hu J. Wild bootstrap for quantile 

regression. Biometrika. 2011;98:995−9. 

17. He X, Zhu L-X. A lack-of-fit test for quantile regression. 

J Am Stat Assoc. 2003;98:1013−22.  

18. Yanuar F, Ibrahim K, Jemain AA. Bayesian structural 

equation modeling for the health index. J Appl Stat. 

2013;40:1254−69. 

19. Rahmadita A, Yanuar F, Devianto D. The construction of 

patient loyalty model using bayesian structural equation 

modeling approach. Cauchy - J Mat Murni dan Apl. 

2018;5:73−9.

 

 

 

 

 

 

 


	Applying bootstrap quantile regression for the construction of a low birth weight model
	Recommended Citation

	Applying bootstrap quantile regression for the construction of a low birth weight model

